ФГБОУ ВО Новосибирский ГАУ

Кафедра механизации животноводства и переработки сельскохозяйственной продукции

ТЕПЛОТЕХНИКА

тесты контроля остаточных знаний

Кафедра механизации животноводства и переработки сельскохозяйственной продукции

УДК 621.1 ББК 31.3

Теплотехника: тесты контроля остаточных знаний / Новосиб. гос. аграр. ун-т. Инженер. ин-т; сост. Е.А. Пшенов – Новосибирск, 2023. – 44 с.

Рецензент: канд. тех. наук, доцент Е.А. Булаев

Тесты контроля остаточных знаний предназначены для студентов очной и заочной форм обучения по направлениям подготовки:

Агроинженерия;

Эксплуатация транспортно-технологических машин и комплексов; Технология транспортных процессов; Профессиональное обучение (по отраслям); Продукты питания животного происхождения; Технология продукции и организация общественного питания

Утверждено и рекомендовано к изданию методическим советом Инженерного института (протокол № 8 от 28 марта 2023 г.).

ВВЕДЕНИЕ

Наиболее эффективным систематическим и оперативным контролем знаний студентов является тестирование.

Традиционный тест представляет собой стандартизированный метод диагностики уровня и структуры подготовленности студентов. При этом достижение обоснованного вывода о знаниях студентов на основе содержания теста является главной целью тестирования.

Содержащиеся в сборнике тесты содержат задания по основным темам разделов «Теплотехники»: основные понятия и определения; первый закон термодинамики; второй закон термодинамики; термодинамические процессы идеальных газов; круговые процессы; водяной пар; влажный воздух; основные понятия тепломассообмена; конвективный теплообмен; теплопередача через стенку; лучистый теплообмен; основы теплового расчета; теплообменные аппараты; виды и характеристики топлива; основы теории горения и организация сжигания топлив в промышленных условиях; топочные устройства; паровые и газовые турбины; основы теплоснабжения

Тесты введены в оболочку SunRav TestOfficePro 5, которая позволяет устанавливать различные параметры для текущего тестирования и изменять количество тем и вопросов для него из общего набора заданий. При этом легко могут быть сформированы различные модули с установленным преподавателем количеством вопросов из каждой выбранной им темы. Что позволяет проводить как текущий, так и промежуточный контроль знаний студентов.

1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Если условно в объеме, который занимает смесь газов, оставить только один компонент, не изменяя температуры, то давление оставленного компонента будет равно:

- о Абсолютному давлению.
- Парциальному давлению.
- о Избыточному давлению

Величина и В в уравнении состояния идеального газа носит название:

- о Газовой постоянной.
- Универсальной газовой постоянной.
- Постоянной Большмана.

По какой формуле можно посчитать газовую постоянную смеси?

- $\circ \sum (r_i \cdot R_i)$
- \circ $\sum R_i$
- $\circ \sum (g_i \cdot R_i)$
- $\circ \sum (\mu_i \cdot R_i)$

Укажите уравнение состояния идеального газа (Клапейрона) для *«т»* кг газа!

- \circ $pV=N(\mu R)T$
- \circ $p(\mu\nu)=(\mu R)T$
- \circ pv=RT
- \circ pV=mRT

Какой объем занимает 1 кмоль газа при нормальных физических условиях?

- о 24,4 м³
- о 22,4 л
- о 24,4 л
- о 22,4 м³

Которая из величин является параметром состояния газа?

- Молекулярная масса;
- o Macca;
- о Теплота;
- о Абсолютное давление

Укажите уравнение состояния для 1 кг идеального газа.

- \circ pv = const.
- \circ pV = mRT.
- \circ pv = RT.

Плотность воздуха равна 1,293 кг/м³. Определить удельный объем воздуха.

- 0 1,293.
- 0,923.
- 0,77.

В системе находится воздух с избыточным давлением $p_{\rm H36} = 0.4$ МПа. Атмосферное давление $p_{\rm B} = 0.1$ МПа. Определить абсолютное давление.

- o 0.5 МПа.
- o 0.3 МПа.
- o 0.25 МПа.

Укажите уравнение состояния идеального газа.

- \circ pv = const.
- \circ pV = mRT.
- $\bigcirc \left(p + \frac{a}{v^2}\right)(v b) = RT.$

Сухой воздух имеет следующий массовый состав: примерно 23,2% O_2 и 76,8% N_2 . Определить газовую постоянную смеси (R_{cm}) , если $R_{O2}=260$ Дж/(кг·К) $R_{N2}=297$ Дж/(кг·К)

- 286,9 Дж/(кг·К).
- о 557 Дж/(кг⋅К).
- 8314 Дж/(кг·К).

В сосуде объемом $0.75~{\rm M}^3$ находится $2.5~{\rm K}\Gamma$ углекислого газа. Найти удельный объем газа.

- \circ 3.33 kg/m³.
- о 1.875 кг·м³.
- \circ 0.3 m³/kg.

2. ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ

Которая зависимость является уравнением Майера?

$$\circ$$
 $c_p/c_v=k$

$$\circ$$
 c_p - c_v = R

$$\circ \sum p_i = p$$

$$\circ$$
 $c_p + c_v = R$

Укажите формулу для определения средней теплоемкости.

$$c = \frac{dq}{dt}$$

$$c = \frac{q}{t_2 - t_1}$$

$$c = \frac{q}{t_2 - t_1}$$

$$c = \frac{q}{t_2 - t_2}$$

Укажите формулу для определения истиной теплоемкости.

$$c = \frac{dq}{dt}$$

$$c = \frac{q}{t_2 - t_1}$$

$$c = \frac{q}{t_2 - t_1}$$

$$c = \frac{q}{t_2 - t_1}$$

Укажите формулу связи теплоемкостей c_v и c_p для идеального газа (формулу Майера).

$$\begin{array}{ll} \bigcirc & c_p = c_v. \\ \bigcirc & c_p - c_v = R. \\ \bigcirc & c_p / c_v = k. \end{array}$$

Определить массовую теплоемкость c_p , если: μc_p =32,8 кДж/(кмоль·К); μ =27,8.

К газу подводится извне 200 кДж теплоты, изменение внутренней энергии ΔU составляет 20 кДж. Определить удельную работу, кДж/кг, если количество газа составляет 0,6 кг.

- о $\ell = 20 \text{ кДж/кг}$
- \circ $\ell = 300 кДж/кг.$
- \circ $\ell = 100 кДж/кг.$

Уравнение Майера для идеального газа имеет вид...

$$c_{p} - c_{v} = R$$

$$c_{p} - c_{v} > R$$

$$c_{p} - c_{v} > R$$

$$c_{v} - c_{p} = R$$

$$c_{p} - c_{v} < R$$

Уравнение Майера для реального газа имеет вид...

$$c_p - c_v = R$$

$$c_p - c_v > R$$

$$c_v - c_p = R$$

$$c_v - c_p = R$$

$$c_p - c_v < R$$

Энтальпия (Н) термодинамической системы равна:

- $\circ \quad H = U + pV.$
- $\circ \quad H = c_v + R.$
- $\circ \quad H = U + Ts.$

Укажите уравнение первого закона термодинамики.

- \circ $\Delta S = Q/T$.
- \circ Q= ΔU +L.
- \circ $\Delta H = \Delta U + pV$.

Первый закон термодинамики есть частный случай:

- о Закона сохранения массы веществ.
- о Закона сохранения и превращения энергии.
- Закона сохранения количества движения.

Теплоемкость какого процесса бесконечно велика.

- о Изотермического.
- о Изохорного.
- о Адиабатного.

3. ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ

Аналитическое выражение для второго закона термодинамики записывается в виде $ds \ge dQ/T$. Для каких процессов в этом выражении справедлив знак равенства?

- о Для изотермических.
- о Для обратимых.
- о Для необратимых.

При увеличении энтропии $(S_2 > S_1)$:

- Теплота не подводится и не отводится.
- Теплота отводится.
- о Теплота подводится.

Укажите аналитическое выражение второго закона термодинамики.

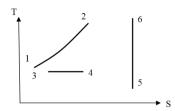
- \circ ds $\geq \delta q/T$.
- \circ $\delta q = du + pdv$.
- $\circ \quad \delta q = dh vdp.$

Физическая величина, характеризующая направленность процессов в природе называется...

- о Энтропия
- о Энтальпия
- о Градиент

Укажите основное уравнение термодинамики, или термодинамическое тождество

- \circ ds = du + pdv = dh vdp
- $\circ \quad ds = du pdv = dh + vdp$
- \circ ds = du + vdp = dh pdv


Аналитическое выражение для второго закона термодинамики записывается в виде $ds \ge dQ/T$. Для каких процессов в этом выражении справедлив знак больше?

- о Для изотермических.
- о Для обратимых.
- о Для необратимых.

4. ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ ИДЕАЛЬНЫХ ГАЗОВ

В каком из процессов теплота, подведенная к газу, больше?

- о В процессе 1-2.
- о В процессе 3-4.
- о В процессе 5-6.

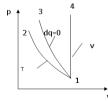
Теплоемкость какого процесса равна нулю.

- о Изотермического.
- о Изохорного.
- о Адиабатного.

Для изотермического процесса:

- о показатель политропы равен 1
- о показатель политропы равен 0
- о показатель политропы равен k
- о показатель политропы равен $\pm \infty$

Указать формулу изменения энтропии в изохорном процессе.


- \circ $c_p ln(T_2/T_1)$
- \circ $c_{\nu}ln(T_2/T_1)$
- \circ $c_v ln(T_2/T_1) + Rln(v_2/v_1)$
- \circ $Rln(v_2/v_1)$

Работа расширения (сжатия) ℓ в изохорном процессе равна:

- о Изменению внутренней энергии.
- о Подведенной теплоте.
- о Нулю.

На диаграмме p — v изображены термодинамические процессы. Укажите в каком из этих процессов теплота отводится от газа.

- \circ В изотермическом процессе 1 2.
- \circ В адиабатном процессе 1 3.
- \circ В изохорном процессе 1 4.

Указать формулы для определения удельной теплоты ${\bf q}$ и удельной работы ${\bf l}$ для изохорного процесса идеального газа.

$$l = \frac{R}{k-1} (T_1 - T_2).$$

$$\circ \quad q = RT \cdot \ln(p_1/p_2) \qquad \qquad l = q.$$

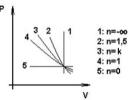
$$0 \quad q = RT \ln(p_1/p_2) \qquad l = q$$

$$0 \quad q = c_v \cdot (T_2 - T_1) \qquad l = 0.$$

Указать формулу теплоты, подведенной к газу в изохорном процессе.

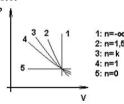
$$\circ$$
 $c_v(T_2-T_1)$

$$\circ c_p(T_2\text{-}T_1) RTln(v_2/v_1)$$

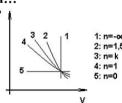

$$\circ$$
 $c_v(T_2-T_1)(n-k)/(n-1)$

Для изохорного процесса:

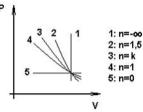
- показатель политропы равен 1
- о показатель политропы равен 0
- о показатель политропы равен k
- \circ показатель политропы равен $\pm \infty$


Процесс 1, показанный на графике, называется...

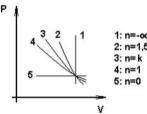
- о изохорным
- о политропным
- о изотермическим
- о изобарным


Процесс 2, показанный на графике, называется...

- о изохорным
- о политропным
- о изотермическим
- о изобарным


Процесс 3, показанный на графике, называется...

- о изохорным
- о адиабатный
- о изотермическим
- о изобарным


Процесс 4, показанный на графике, называется...

- изохорным
- 0 политропным
- 0 изотермическим
- о изобарным

Процесс 5, показанный на графике, называется...

- изохорным 0
- политропным 0
- о изотермическим
- изобарным

В процессе 1 – 2 к газу подвели некоторое количество теплоты. Выяснилось, что газ не совершил никакой работы. Как изменился удельный объем газа.

- Увеличился. 0
- Не изменился.
- о Уменьшился

Укажите формулы для определения удельной теплоты q и удельной работы l для изобарного процесса идеального газа.

$$\circ$$
 q = $c_v(T_2-T_1)$ $\ell = 0$.

$$\begin{array}{ll} \circ & q = c_p(T_2\text{-}T_1) & \ell = R(T_2\text{-}T_1). \\ \circ & q = R \cdot \ln(p_1/p_2) & \ell = q. \end{array}$$

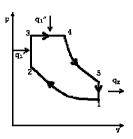
$$\circ \quad q = R \cdot \ln(p_1/p_2) \qquad \ell = q$$

Укажите формулы для определения удельной теплоты q и удельной работы l для изохорного процесса идеального газа.

$$\circ \quad q = c_v(T_2 - T_1) \qquad \ell = 0.$$

$$\circ \quad q = c_p(T_2\text{-}T_1) \qquad \ell = R(T_2\text{-}T_1).$$

$$\circ \quad q = R \cdot \ln(p_1/p_2) \qquad \ell = q.$$

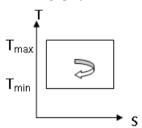

5. КРУГОВЫЕ ПРОЦЕССЫ

1 кг воздуха совершает цикл Карно в пределах температур $t_2 = 30$ °C, $t_1 = 250$ °C. Определить термический КПД цикла.

- \circ $\eta_t = 0.42$.
- $0 \eta_t = 0.88.$
- \circ $\eta_t = 0.12.$

Какой цикл д.в.с. показан на рисунке?

- о с подводом теплоты при постоянном объеме
- о с подводом теплоты при постоянном давлении
- о со смешанным подводом теплоты
- о Карно



Цикл с подводом теплоты при постоянном давлении:

- реализуется в дизелях
- о реализуется в цикле Дизеля
- о реализуется в бензиновых двигателях
- о реализуется в бензиновых и газовых двигателях

Термический КПД цикла Карно выражается формулой:

$$\eta_{_{\mathcal{K}}} = rac{T_{\min}}{T_{\max}}$$
 $\eta_{_{\mathcal{K}}} = rac{T_{\max} - T_{\min}}{T_{\max}}$ $\eta_{_{\mathcal{K}}} = rac{T_{\max} - T_{\min}}{T_{\min}}$.

Какое устройство называется тепловым насосом?

- о для перекачивания жидкости, работающее от теплового двигателя.
- для передачи теплоты от источника с низкой температурой к источнику с высокой температурой.
- для рассеивания теплоты от источника с высокой температурой к источнику с низкой температурой.

Цикл с подводом теплоты при постоянном объеме:

- о реализуется в дизелях
- о реализуется в дизелях и бензиновых двигателях
- о реализуется только в бензиновых двигателях
- о реализуется в бензиновых и газовых двигателях

К газу в круговом процессе подведено 250 кДж/кг теплоты. Термический КПД равен 0,5. Найти работу, полученную в цикле.

- о 125 кДж/кг.
- о 500 кДж/кг.
- о 250 кДж/кг.

Процесс 1-2 –процесс сжатия газа в компрессоре. Укажите площадь, соответствующую технической работе сжатия.

- о Площадь
- 1-2-5-1.
- о Площадь
- 1-2-3-4-1.
- о Площадь
- 1-2-6-7-1.

В результате осуществления кругового процесса получена работа, равная 90 кДж/кг, а отдано охладителю 60 кДж/кг. Определить термический КПД цикла.

- 0 1,5.
- 0,67.
- 0,6.

Цикл Карно состоит:

- о из двух равновесных изобарных и двух равновесных адиабатных процессов
- о из двух равновесных изохорных и двух равновесных адиабатных процессов
- из двух равновесных политропных и двух равновесных адиабатных процессов
- о из двух равновесных изотермических и двух равновесных адиабатных процессов

Укажите выражение для определения холодильного коэффициента обратного цикла Карно.

13

$$\circ \quad \epsilon = (T_1 - T_2)/T_1.$$

$$\circ \quad \epsilon = T_1 / (T_1 - T_2).$$

$$\circ \quad \varepsilon = T_2 / (T_1 - T_2).$$

Термический коэффициент полезного действия равен:

- Отношению теплоты, подведенной к рабочему телу, к работе цикла.
- Отношению теплоты, отнятой у рабочего тела, к работе цикла.
- Отношению работы цикла к теплоте, подведенной в цикле к рабочему телу.

Холодопроизводительность холодильного агента – это:

- Количество теплоты, отведенной от охлаждаемого объекта за единицу времени.
- Количество теплоты, отведенной от охлаждаемого объекта одним килограммом рабочего тела.
- о Температура, созданная в холодильной камере.

Холодильный коэффициент - это:

- Отношение теплоты, отбираемой от холодного источника, к работе пикла.
- о Отношение работы цикла к теплоте, отдаваемой горячему источнику.
- о Отношение теплоты к абсолютной температуре.

Цикл с подводом теплоты при постоянном объеме:

- о реализуется в дизелях
- о реализуется в дизелях и бензиновых двигателях
- о реализуется только в бензиновых двигателях
- о реализуется в бензиновых и газовых двигателях

Холодопроизводительность холодильной машины – это:

- Количество теплоты, отведенной от охлаждаемого объекта за единицу времени.
- Количество теплоты, отведенной от охлаждаемого объекта одним килограммом рабочего тела.
- о Температура, созданная в холодильной камере.

Цикл с подводом теплоты при постоянном давлении:

- о реализуется в компрессорных дизелях
- о реализуется в современных дизелях
- о реализуется в бензиновых и газовых двигателях

6. ВОДЯНОЙ ПАР

Как изменяется состояние пара в процессе 1-2, изображенном на h-s диаграмме.

- о Влажный пар переходит в перегретый...
- о Перегретый пар переходит во влажный.
- Сухой насыщенный пар переходит во влажный

Между верхней пограничной кривой и нижней пограничной кривой находится:

- Область ненасышенной жидкости.
- о Область влажного насыщенного пара.
- о Область перегретого пара.

Линия К-С является:

- о Нижней пограничной кривой.
- о Верхней пограничной кривой.
- о Линией постоянного влагосодержания

Пар, вода и лед одновременно находятся в равновесии в _____точке.

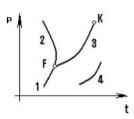
- о тройной
- о критической
- о кюри
- о росы

Процесс 1-3, показанный на h-s диаграмме:

- о Изохорный
- о Изобарный
- о Изотермический

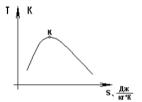
.Процесс 1-2, показанный на h-s диаграмме:

- Изохорный.
- о Изотермический.
- о Изобарный

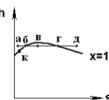


Степень перегрева пара – это...

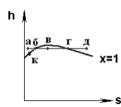
- о температура пара в °C
- о температура пара в °К
- о разность температур пара и насыщения
- о разность температур пара и критической


Фазовому равновесию «жидкость – пар», показанному на графике, соответствует линия фазового перехода

- $\begin{array}{ccc} \circ & 1 \\ \circ & 2 \end{array}$
- 0 3
- 0 4


Теплота парообразования в точке К, равна ...

- \circ r = 0
- $\infty = 1$
- \circ r < 0
- $0 < r < \infty$


При дросселировании пара высокого давления a-д, показанного на графике, точка a соответствует ...

- о перегретому пару
- о кипящей воде
- о сухому насыщенному пару
- о влажному насыщенному пару

При дросселировании пара высокого давления а–д, показанного на графике, точка ∂ соответствует ...

- о перегретому пару
- о кипящей воде
- о сухому насыщенному пару
- о влажному насыщенному пару

7. ВЛАЖНЫЙ ВОЗДУХ

Для насыщенного воздуха относительная влажность ф равна:

- \circ $\varphi = 0\%$.
- \circ $\varphi = 100\%$.
- $\circ \quad \varphi = 120\%$.

Если степень сухости влажного пара равна 0,9, это значит:

- В 1 кг пара содержится 0,9 кг насыщенной жидкости и 0,1 кг сухого насыщенного пара.
- В 1 кг пара содержится 0,1 кг насыщенной жидкости и 0,9 кг сухого насыщенного пара.
- В 1 кг пара содержится 0,1 кг влажного пара и 0,9 кг сухого насыщенного пара.

Укажите температуру начала выпадения влаги из влажного воздуха.

- о При температуре мокрого термометра.
- о При температуре выше температуры точки росы.
- о При температуре точки росы.

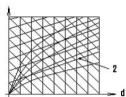
Отношение массы водяного пара m_п, содержащегося во влажном воздухе, к массе сухого воздуха m_в называется...

- о влагосодержанием
- о относительной влажностью
- о абсолютной влажностью
- о точкой росы

Процесс нагрева или охлаждения влажного воздуха в калорифере изображается на h-d диаграмме влажного воздуха как процесс:

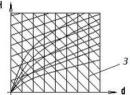
- о При постоянном влагосодержании d = const.
- \circ При постоянной энтальпии h = const.
- \circ При постоянной относительной влажности φ = const.

Механическая смесь сухого воздуха и водяного пара, называется...

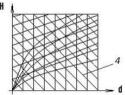

- о влажным воздухом
- о ненасыщенным влажным воздухом
- о газом
- о паром

Влагосодержание влажного воздуха - это:

- Количество водяного пара в 1 кг влажного воздуха.
- Количество водяного пара в 1 м³ влажного воздуха.
- о Количество водяного пара, приходящееся на 1 кг сухого воздуха.


Линия 2, показанная на Hd-диаграмме влажного воздуха, соответствует...

- о относительной влажности
- о изотерме влажного воздуха
- о влагосодержанию
- изоэнтальпе


Линия 3, показанная на Hd-диаграмме влажного воздуха, соответствует...

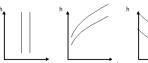
- о относительной влажности
- о изотерме влажного воздуха
- о влагосодержанию
- о изоэнтальпе

Линия 4, показанная на Hd-диаграмме влажного воздуха, соответствует...

- о относительной влажности
- о изотерме влажного воздуха
- о влагосодержанию
- изоэнтальпе

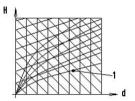
Укажите на h-d диаграмме влажного воздуха линии постоянного влагосодержания.

- 0 1
- 0 3



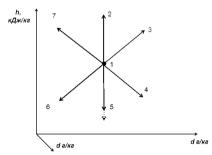
Укажите правильное расположение линии постоянной энтальпии влажного воздуха.

- 1 0
- \circ 3



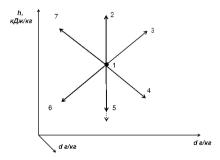
Линия 1, показанная на Hd-диаграмме влажного воздуха, соответствует...

- о относительной влажности
- о изотерме влажного воздуха
- о влагосодержанию
- о изоэнтальпе



Как изменится влагосодержание (d) влажного воздуха при температуре 60°C и относительной влажности 60%, если его нагреть в калорифере.

- о Уменьшится.
- о Увеличится.
- Не изменится.


Какому изменению состояния влажного воздуха соответствует процесс 1-2

- о нагрев
- о охлаждение
- о осушение
- о увлажнение

Какому изменению состояния влажного воздуха соответствует процесс 1-7

- о нагрев
- о охлаждение
- о адиабатное осушение
- о увлажнение

8. ОСНОВНЫЕ ПОНЯТИЯ ТЕПЛОМАССООБМЕНА

Закон Фурье для стационарного одномерного температурного поля имеет вид...

$$q = -\lambda \cdot \frac{dt}{dx} \qquad q = -\frac{dt}{dx} \qquad q = -\lambda / \frac{dt}{dx} \qquad q = 1 / \left(\lambda \cdot \frac{dt}{dx}\right)$$

Изотермическая поверхность- это:

- о геометрическое место точек, температура в которых не одинакова
- о геометрическое место точек, температура в которых стационарна
- о геометрическое место точек, температура в которых одинакова
- о геометрическое место точек, температура в которых не стационарна

Испарение - это:

- о парообразование в объеме жидкости
- о парообразование с поверхности жидкости
- о переход 1 кг жидкости в пар
- о переход 1 м³ жидкости в пар

Тепловой поток – это количество теплоты:

- о Передаваемое в единицу времени через произвольную поверхность.
- о Передаваемое в единицу времени через единичную площадь.
- Проходящее в единицу времени через единичную площадь при градиенте температуры, равном единице.

Коэффициент теплопроводности λ, Вт/(м·К) характеризует:

- о Способность вещества передавать теплоту.
- о Интенсивность теплообмена между поверхностью тела и средой.
- о Интенсивность собственного излучения тела.

Градиент температуры - это:

- Вектор, направленный по нормали к изотермической поверхности в сторону убывания температуры.
- Количество теплоты, которое проходит в единицу времени через единицу поверхности.
- Вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно равный производной от температуры по этому направлению.

Тепловой поток – это количество теплоты:

- о Передаваемое в единицу времени через произвольную поверхность.
- о Передаваемое в единицу времени через единичную площадь.
- Проходящее в единицу времени через единичную площадь при градиенте температуры, равном единице.

Знак "минус" в записи закона Фурье выражает:

- Что чем больше градиент температуры, тем меньше плотность потока тепла.
- о Что коэффициент теплопроводности отрицателен.
- Что вектор плотности теплового потока направлен противоположно вектору градиента температуры, т.е. в сторону уменьшения температуры.

Сублимация – это:

- Переход вещества из жидкого состояния в газообразное.
- о Переход вещества из газообразного состояния в жидкое.
- о Переход вещества из твердого состояния в газообразное.

Конденсация - это:

- Переход вещества из жидкого состояния в газообразное.
- Переход вещества из газообразного состояния в жидкое.
- о Переход вещества из твердого состояния в газообразное.

Кипение - это:

- Процесс парообразования с поверхности жидкости.
- о Процесс парообразования во всем объеме жидкости.
- о Переход вещества из твердого состояния в газообразное.

Перенос теплоты при соприкосновении частиц, имеющих различную температуру, называется:

- о Теплопроводностью.
- Конвекцией.
- о Излучением.

Перенос теплоты макро объемами жидкости, называется:

- о Теплопроводностью.
- Конвекцией.
- о Излучением.

9. КОНВЕКТИВНЫЙ ТЕПЛООБМЕН

В ламинарном режиме жидкость движется:

- о С образованием пузырей.
- С образованием вихрей.
- о Плавно, без образования вихрей или пузырей.

В каком случае интенсивность теплоотдачи ниже

- о При кипении.
- о В случае вынужденной конвекции.
- о В случае свободной конвекции.

О режиме течения жидкости судят по значению числа:

- Рейнольдса (Re).
- Нуссельта (Nu).
- о Прандтля (Pr).

Теплоотдачей называется перенос теплоты:

- От жидкости к жидкости через разделяющую их стенку.
- Между потоком жидкости (или газа) и стенкой.
- Молекулярный перенос теплоты в телах.

Процесс теплообмена между поверхностью твердого тела и жидкостью (газом):

- о называется теплопередачей
- о называется теплоотдачей
- о называется теплопроводностью
- о называется теплоемкостью

Коэффициент теплоотдачи α, Вт/(м²·К) характеризует:

- о Способность вещества проводить теплоту.
- о Интенсивность собственного излучения тела.
- о Интенсивность теплообмена между поверхностью тела и средой.

Укажите число Рейнольдса (Re).

- \circ $\alpha \cdot \ell_0 / \lambda$.
- $o \quad \mathbf{w} \cdot \ell_0 / \mathbf{v}$
- o v/a.

О режиме течения жидкости судят по значению числа:

- Рейнольдса (Re).
- о Нуссельта (Nu).
- о Прандтля (Рг).

В уравнении Ньютона-Рихмана тепловой поток:

- о прямо пропорционален разности температур
- о прямо пропорционален температурам
- о прямо пропорционален коэффициенту теплопередачи
- о обратно пропорционален коэффициенту теплопроводности

Укажите формулу Ньютона-Рихмана (формулу теплоотдачи).

$$q_{w} = -\lambda \frac{\partial T}{\partial n}.$$

$$q_{w} = c_{0} \left(\frac{T_{w}}{100}\right)^{4}.$$

$$q_{w} = \alpha \left(T_{w} - T_{\infty}\right).$$

Укажите размерность числа Нуссельта.

- \circ BT / ($M^2 \cdot K$).
- \circ BT / (M · K).
- о Безразмерное.

Коэффициент теплоотдачи α:

- о рассчитывается из критериального уравнения Рейнольдса
- о рассчитывается из критериального уравнения Прандтля
- о рассчитывается из критериального уравнения Нуссельта
- о рассчитывается из критериального уравнения Грасгофа

В уравнении Ньютона-Рихмана тепловой поток:

- о прямо пропорционален разности температур
- о прямо пропорционален коэффициенту теплопередачи
- о прямо пропорционален температурам
- о обратно пропорционален коэффициенту теплопроводности

С какой стороны плоской поверхности установка ребер позволит в наибольшей степени интенсифицировать теплопередачу.

- о Со стороны большего коэффициента теплоотдачи.
- о Со стороны меньшего коэффициента теплоотдачи.
- о Не имеет значения, с какой стороны.

10. ТЕПЛОПЕРЕДАЧА ЧЕРЕЗ СТЕНКУ

Какой из температурных графиков соответствует случаю: стальная стенка, с одной стороны покрыта слоем сажи с теплопроводностью 0,09 Вт/(м·К), с другой слоем накипи с теплопроводностью 1,75 Вт/(м·К).

1.

Коэффициент теплопередачи для плоской стенки вычисляется по формуле

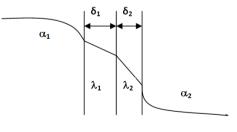
$$k = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}}$$

$$k = \frac{1}{\frac{1}{\alpha_1} + \frac{\lambda}{\delta} + \frac{1}{\alpha_2}}$$

$$k = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}} \qquad k = \frac{1}{\frac{1}{\alpha_1} + \frac{\lambda}{\delta} + \frac{1}{\alpha_2}} \qquad k = \frac{1}{\frac{1}{\alpha_1} - \frac{\delta}{\lambda} + \frac{1}{\alpha_2}} \qquad k = \frac{1}{\frac{1}{\alpha_1} + \frac{1}{\alpha_2}}$$

$$k = \frac{1}{\frac{1}{\alpha_1} + \frac{1}{\alpha_2}}$$

Укажите выражение для определения термического сопротивления цилиндрической стенки (для теплопроводности).


$$\frac{\delta}{\lambda}$$

$$\frac{\delta}{\alpha} \; . \qquad \qquad \frac{1}{2\lambda} ln \frac{d_2}{d_1} \; . \qquad \qquad \frac{1}{d \cdot \alpha} \; .$$

$$\frac{1}{d \cdot \alpha}$$

Укажите формулу для определения термического сопротивления теплопередачи плоской стенки

Указать выражение термического сопротивления теплопередачи через 1-слойную цилиндрическую стенку.

$$\overset{\square}{} \quad \frac{1}{\alpha_1 d_1} + \frac{1}{2\lambda} \ell n \frac{d_2}{d_1} + \frac{1}{\alpha_2 d_2} \qquad \overset{\square}{} \quad \frac{\delta}{\lambda} \qquad \overset{\square}{} \quad \frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2} \qquad \overset{\square}{} \quad \frac{1}{\alpha_1} + \frac{1}{\alpha_2}$$

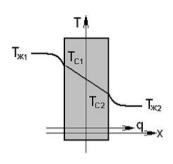
$$\square \frac{\delta}{\lambda}$$

$$\alpha \frac{1}{\alpha} + \frac{\delta}{\lambda} + \frac{1}{\alpha}$$

$$\frac{1}{\alpha_1} + \frac{1}{\alpha_2}$$

Если $\alpha_1 >> \alpha_2$ то коэффициент теплопередачи для плоской стенки,

представленной на рисунке, имеет вид...


$$k \approx \frac{\lambda}{\delta}$$

$$k \approx \frac{1}{\frac{1}{\alpha_{1}} + \frac{\delta}{\lambda}}$$

$$k \approx \frac{1}{\frac{1}{\alpha_{1}} + \frac{\delta}{\lambda} + \frac{1}{\alpha_{2}}}$$

$$k \approx \frac{1}{\frac{1}{\lambda} + \frac{1}{\alpha_{2}}}$$

$$k \approx \frac{1}{\frac{\delta}{\lambda} + \frac{1}{\alpha_{2}}}$$

Какой слой многослойной стенки имеет наименьший коэффициент теплопроводности

- Слой 1.
- Слой 3.
- Слой 2.

Какой слой многослойной стенки имеет наибольший коэффициент теплопроводности

- Слой 1.
- Слой 3.
- Слой 2.

Укажите формулу для определения коэффициента теплопередачи.

$$\lambda = \frac{|q|}{|gradt|}.$$

$$k = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}}.$$

$$\alpha = \frac{\lambda}{c \cdot \rho}.$$

$$a = \frac{\lambda}{c \cdot \rho}$$

Укажите уравнение теплопередачи:

$$\circ \quad Q = k(t_1 - t_2) F.$$

$$\circ \quad Q = \alpha (t_1 - t_2) F.$$

$$\circ$$
 Q = G₁ (h'₁- h"₁)F.

11. ЛУЧИСТЫЙ ТЕПЛООБМЕН

Поглощательная способность равна единице:

- Для абсолютно черных тел.
- о Для серых тел.
- о Для абсолютно прозрачных тел.

Поверхностная плотность потока интегрального излучения абсолютно черного тела в зависимости от его температуры описывается законом...

- Стефана Больцмана
- о Вина
- о Кирхгофа
- о Фурье

Тело называют абсолютно прозрачным, если...

- \circ A = 0, R = 0
- o D = 0, R = 0
- \circ D = 0, R = 0, A = 0
- o A = 0, D = 0

С повышением температуры максимум интенсивности излучения:

- о Смещается в сторону более длинных волн.
- о Смещается в сторону более коротких волн.
- Не изменяется.

Какое из тел при прочих равных условиях имеет большую интенсивность излучения.

- о Со степенью черноты 0,3.
- о Со степенью черноты 0,7.
- о Со степенью черноты 0,9.

Размерностью коэффициента излучения абсолютно черного тела является...

- \circ BT/(M^2K^4)
- \circ BT/(M^4K^2)
- \circ BT/ \dot{M}^2
- Bt/K⁴

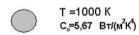
Тепловой поток излучения между двумя параллельными телами, имеющими различные температуры, определяется по формуле:

- \circ $O = \varepsilon_{TIP} Co [(T_1/100)^4 (T_2/100)^4] F.$
- \circ Q = k(T₁-T₂) F.
- \circ O = $\alpha(T_W-T_{CT})$ F.

Если $F_1 = F_2$, $\varepsilon_1 = 0.1$, $\varepsilon_2 = 0.25$, $T_1 = 1000$ K, $T_2 = 1000$ K, то плотность результирующего теплового потока от первой поверхности на вторую, показанных на рисунке, равна...

- $q_{1,2} = 0$

- $\begin{array}{ccc} \circ & q_{1,2} & \circ \\ \circ & q_{1,2} \approx 5,67 \cdot 10^4 \\ \circ & q_{1,2} \approx 5,67 \cdot 10^2 \\ \circ & q_{1,2} \approx 5,67 \cdot 10^8 \end{array}$



Укажите закон Стефана – Больцмана для серых тел:

- \circ Q = k(t₁-t₂) F.
- \circ $E_0 = c_0 (T/100)^4$
- $\circ \quad E = \varepsilon \cdot c_0 (T/100)^4.$

Если излучательная способность серого тела E=5670 Bт/м² то интегральный коэффициент излучения (степень черноты) равен...

- 0.1
- 0 10.0
- 0 - 1

Укажите формулу закона Стефана-Больцмана.

$$E_{o\lambda} = \frac{2\pi c_1}{\lambda^5} \left(e^{-\frac{c_2}{\lambda T}} - 1 \right)^{-1}, \underline{BT/M}^3$$

Которое из приведенных выражений является лучистым тепловым потоком?

$$\circ$$
 $q = -\lambda(\frac{dt}{dt})$

$$\circ \quad q = k(t_{\infty 1} - t_{\infty 2})$$

$$\circ \quad q = \alpha(t_1 - t_2)$$

Поглощательная способность равна единице:

- Для абсолютно черных тел.
- о Для серых тел.
- о Для абсолютно прозрачных тел.

Назовите вид теплообмена, который возможен в условиях отсутствия вещества между телами (в вакууме).

- о Теплопроводность.
- о Конвекция.
- о Излучение.

В законе Стефана-Больцмана лучеиспускательная способность тела Е:

- о прямо пропорциональна температуре во второй степени
- о прямо пропорциональна температуре в четвертой степени
- о обратно пропорциональна температуре во второй степени
- о обратно пропорциональна температуре в четвертой степени

Степенью черноты тела (ε) называется:

- Отношение энергии пропущенной Е_{проп} к энергии падающей Е_{пад.}
- Отношение излучательной способности E реального тела к излучательной способности $E_{\rm o}$ абсолютно черного тела при той же температуре.
- \circ Отношение отраженной энергии $E_{\text{отр}}$ к энергии падающей $E_{\text{пад}}$

Если $\varepsilon_1 = \varepsilon_2 = \varepsilon_3$, то установка экрана в положении, изображенном на рисунке, уменьшает поток излучения в ____ раз(-a).

- 0104
- 0 3
- 0 2

Если $F_1 << F_2$, то приведенная степень черноты $\frac{1}{\varepsilon_1} + \frac{F_1}{F_2} \left(\frac{1}{\varepsilon_2} - 1 \right)$ системь тел, изображенных на рисунке, равна ...

$$\begin{array}{ccc}
& & \varepsilon_{np} & \varepsilon_{1} \\
& & \varepsilon_{np} & \varepsilon_{2} \\
& & \varepsilon_{np} & \varepsilon_{1} \cdot \varepsilon_{2}
\end{array}$$

12. ОСНОВЫ ТЕПЛОВОГО РАСЧЕТА

Цель _____ расчета теплообменника состоит в определении конечных параметров теплоносителей.

- о поверочного
- о конструктивного
- о гидравлического
- о технико-экономического

Поверхность, необходимая для передачи теплового потока Q от горячего теплоносителя к холодному, определяется из уравнения...

- о теплопередачи
- о теплового баланса
- о Фурье
- о Ньютона-Рихмана

Твердая поверхность охлаждается в потоке жидкости. Укажите изменение температуры поверхности при уменьшении коэффициента теплоотдачи.

- о Температура поверхности увеличится.
- о Температура поверхности уменьшится.
- о Температура поверхности не изменится.

Укажите уравнение теплопередачи в рекуперативном теплообменнике.

- $\circ \quad Q = k \cdot F \cdot \Delta t_{cp} .$
- $O \quad Q = \alpha \cdot F(t_{xx} t_{cx}) .$
- \circ Q = G (h'₁- h"₁).

Как изменится значение коэффициента теплопередачи, если заменить стальные трубы на медные такого же диаметра.

- о Увеличится.
- о Уменьшится.
- о Практически не изменится.

Уравнение теплового баланса в рекуперативном теплообменном аппарате, в котором происходит нагрев или охлаждение жидкости (без фазовых переходов), имеет вид:

- $O = \alpha(t_{ct} t_{w}) F = -\lambda_{w} (\partial t/\partial n)_{ct} F.$
- $O \qquad Q = G_1 c_{p1}(t'_1 t''_1) = G_2 \cdot c_{p2}(t''_2 t'_2).$
- $O = G_1 (h_1' h_1'') = G_2 \cdot r_2(x_2'' x_2').$

Выделить уравнение теплового баланса теплообменного аппарата?

$$\circ$$
 $Q = kF\Delta t_{cp}$

$$Q = \varepsilon F c_0 [(\frac{T_c}{100})^4 - (\frac{T_{\infty}}{100})^4]$$

$$\circ \quad Q = m_1 c_{p_1} (\dot{t_1} - \dot{t_1}) \eta = m_2 c_{p_2} (\dot{t_2} - \dot{t_2})$$

$$\circ \quad Q = \alpha F \Delta t$$

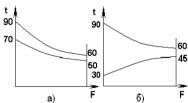
Укажите выражение среднего температурного напора в прямоточном теплообменном аппарате:

$$\frac{\left(t_{1}'-t_{1}''\right)-\left(t_{2}'-t_{2}''\right)}{\ln\frac{\left(t_{1}'-t_{1}''\right)}{\left(t_{2}'-t_{2}''\right)}}$$

$$\frac{\left(t_{1}^{\prime}-t_{1}^{\prime\prime}\right)-\left(t_{2}^{\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime}-t_{1}^{\prime\prime}\right)}{\left(t_{2}^{\prime}-t_{2}^{\prime\prime}\right)}}\cdot \frac{\frac{\left(t_{2}^{\prime\prime}-t_{2}^{\prime}\right)-\left(t_{1}^{\prime\prime}-t_{1}^{\prime}\right)}{\ln\frac{\left(t_{2}^{\prime\prime}-t_{2}^{\prime}\right)}{\left(t_{1}^{\prime\prime}-t_{1}^{\prime}\right)}}\cdot \frac{\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}}\cdot \frac{\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}}\cdot \frac{\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}}\cdot \frac{\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}}\cdot \frac{\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime}$$

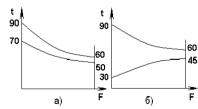
$$\frac{\left(t_{1}'-t_{2}'\right)-\left(t_{1}''-t_{2}''\right)}{\ln\frac{\left(t_{1}'-t_{2}'\right)}{\left(t_{1}''-t_{2}''\right)}}$$

Укажите выражение среднего температурного напора в противоточном теплообменном аппарате:


$$\frac{\left(t_{1}'-t_{1}''\right)-\left(t_{2}'-t_{2}''\right)}{\ln\frac{\left(t_{1}'-t_{1}''\right)}{\left(t_{2}'-t_{2}''\right)}}$$

$$\frac{\left(t_{1}^{\prime}-t_{1}^{\prime\prime}\right)-\left(t_{2}^{\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime}-t_{1}^{\prime\prime}\right)}{\left(t_{2}^{\prime}-t_{2}^{\prime\prime}\right)}}\cdot \frac{\left(t_{2}^{\prime\prime}-t_{2}^{\prime}\right)-\left(t_{1}^{\prime\prime}-t_{1}^{\prime}\right)}{\ln\frac{\left(t_{2}^{\prime\prime}-t_{2}^{\prime}\right)}{\left(t_{1}^{\prime\prime}-t_{1}^{\prime}\right)}}\cdot \frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime}-t_{2}^{\prime}\right)}{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}}\cdot \frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}}\cdot \frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)-\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}}\cdot \frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}\cdot \frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}}\cdot \frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}\cdot \frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}\cdot \frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}\cdot \frac{\left(t_{1}^{\prime\prime}-t_{2}^{\prime\prime}\right)}{\ln\frac$$

$$\frac{(t'_1 - t'_2) - (t''_1 - t''_2)}{\ln \frac{(t'_1 - t'_2)}{(t''_1 - t''_2)}}$$


Наименьшая разность температур для противоточной схемы движения теплоносителей, соответствующей одному представленных из графиков, равна °С.

- 10 0
- 0 60
- 0 15
- 20

Наибольшая разность температур для противоточной схемы движения теплоносителей, соответствующей одному представленных из графиков, равна °С.

- 0 10 0 60
- 0 15
- 20

13. ТЕПЛООБМЕННЫЕ АППАРАТЫ

Регенераторы – это:

- о Теплообменные аппараты, в которых передача теплоты между двумя жидкостями осуществляется через разделяющую стенку.
- Теплообменные аппараты, в которых обмен теплотой осуществляется при смешивании горячей и холодной жидкостей.
- Теплообменные аппараты, в которых одна и та же поверхность нагрева омывается то горячей, то холодной жидкостью.

Регенеративным называется теплообменник, у которого:

- передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их твердую стенку
- передача теплоты от одного теплоносителя к другому осуществляется при непосредственном их контакте
- горячий теплоноситель соприкасается с твердым телом и отдает ему теплоту, далее холодный теплоноситель соприкасается с твердым телом и воспринимает теплоту, аккумулированную твердым телом
- о горячий теплоноситель взаимодействует с твердым телом и реагирует с теплотой, далее холодный теплоноситель соприкасается с твердым телом и воспринимает теплоту, аккумулированную твердым телом

Теплообменником называют аппарат, предназначенный:

- о для отвода теплоты от теплоносителей
- о для подвода теплоты к теплоносителям
- для сообщения теплоты одному из теплоносителей в результате его отвода от другого теплоносителя
- для сообщения теплоты одному из теплоносителей в результате его сообщения к другому теплоносителю

Рекуперативным называется теплообменник, у которого:

- о происходит передача теплоты от одного теплоносителя к другому
- передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их границу раздела
- передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их твердую стенку
- передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их жидкость

14. ТЕПЛОЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ПРОМЫШЛЕННАЯ ТЕПЛОЭНЕРГЕТИКА

Дымосос устанавливается с целью ...

- о создания разряжения (избыточного давления) в топке котла
- о подачи воздуха в топку котла
- о удаления из воды растворенных в ней газов
- о создания избыточного давления в циркуляционном контуре КОТЛа

Необходимость очистки дымовых газов от золы связана с ...

- защитой атмосферы и предотвращением абразивного износа оборудования
- о защитой сельскохозяйственных угодий
- о защитой поверхности земли
- о защитой рек и озер

Если тепловая нагрузка котельной установки с учетом всех теплопотерь за год и низшая теплота сгорания твердого топлива составляют соответственно Q_{κ} =1000 ГДж, Q_i '=25 МДж/кг то годовой расход твердого топлива равен ...

- о 40 т
- о 40 кг
- о 4000 кг
- о 400 т

Дутьевой вентилятор устанавливается с целью ...

- о подачи воздуха в котел
- о создания разряжения в топке котла
- о создания разряжения в газоходах котла
- о создания избыточного давления в циркуляционном контуре котла

Самотяга дымовой трубы будет тем больше, чем выше ______ газов в трубе и ниже температура воздуха.

- о температура
- о давление
- о теплопроводность
- вязкость

Зольность твердого топлива определяется путем прокаливания пробы топлива при температуре ...

- \circ 800 825 °C
- o 105 110 °C
- o 850 °C
- o 700 °C

Если теплонапряжение зеркала горения слоя топлива составляет $q_R = 1200~{\rm kBt/m}^2$, низшая теплота сгорания рабочей массы топлива ${Q_i}^r = 24~{\rm MДж/кг}$ расход топлива $B = 0.1~{\rm kr/c}$, то площадь сечения слоя топки в m^2 равна ...

- 0 2
- 0.5
- 0 5
- 0.2

Отделение пара от воды выполняется в котла.

- барабане
- о питательном насосе
- о необогреваемых опускных трубах
- о пароперегревателе

Основным компонентом природного газа является ...

- о метан СН4
- этан С₂Н₆
- пропан С₃Н₈
- бутан С₄Н₁₀

Формула Менделеева для твердого топлива предназначена для определения ...

- о низшей теплоты сгорания рабочей массы твердого топлива
- о высшей теплоты сгорания рабочей массы твердого топлива
- о теплоты конденсации водяных паров
- теплоты парообразования

Центробежный скруббер предназначен ...

- о для очистки дымовых газов
- о для уменьшения пенообразования
- о для сепарации пара
- о для промывки пара

Тепловой баланс котла характеризует равенство между количествами теплоты.

- о подведенной и расходуемой
- о подведенной и теряемой
- о теряемой и расходуемой
- о теряемой и расходуемой на перегрев пара

Смесь природного газа с воздухом невозможно поджечь от постороннего источника, если концентрация CH₄ меньше ...

- 5 %, либо больше 15 %
- 2,4 %, либо больше 30,8 %
- 2 %, либо больше 75 %
- 4,1 %, либо больше 75 %

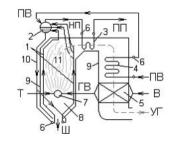
Химический недожог топлива является следствием ...

- недостатка воздуха в зоне горения или плохого перемешивания воздуха с топливом
- избытка воздуха в зоне горения или хорошего перемешивания воздуха с топливом
- о наличия твердых недогоревших частиц топлива
- о наличия CO₂, H₂, CH₄ в продуктах сгорания

Продукт анаэробной ферментации (сбраживания) органических отходов (навоза, растительных остатков, мусора и т.д.) называется ...

- о биогазом
- о генераторным
- о коксовым
- о доменным

В экономичных топочных устройствах котлоагрегатов коэффициент избытка воздуха изменяется от до 1,1.


- 0 1,05
- \circ 0
- 0,5
- 0,75

Основными параметрами, определяющими выбор вентилятора и дымососа, являются _____ при номинальной нагрузке котла.

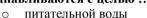
- о подача и давление
- о температура и скорость
- о скорость и подача
- о подача и температура

Цифрой 1 на схеме вертикально – водотрубного барабанного парового котла с естественной циркуляцией обозначен(-ы) ...

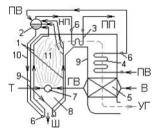
- о экранные трубы
- водяной экономайзер
- о пароперегреватель
- барабан

В топку котла подаются ...

- о энергетическое топливо и окислитель (воздух)
- о энергетическое топливо, окислитель (воздух) и питательная вода
- о каменный уголь, окислитель (воздух) и питательная вода
- о природный газ, окислитель (воздух) и питательная вода


К вспомогательному оборудованию котельной установки относится ...

- о оборудование для подачи топлива
- о котел
- о экономайзер котла
- топочная камера котла


Средством уменьшения уноса солей с паром является ...

- о промывка пара питательной водой в барабане котла
- о стравливание части пара в атмосферу
- о уменьшение подачи питательной воды в котел
- о уменьшение расхода топлива

В современном вертикально — водотрубном паровом котле, показанном на рисунке, экономайзер устанавливаются с целью ...

- ----
- о воздуха
- о топлива
- о сетевой воды

Топочная камера (топка) печи предназначена для ...

- о получения теплоты путем сжигания топлива и ее передачи обрабатываемому материалу
- о предварительного подогрева топлива
- о предварительного подогрева воздуха
- о получения теплоты путем сжигания топлива и ее передачи воде

Содержание серы в малосернистых топочных мазутах составляет ...

- o $S^r \le 0.5 \%$
- \circ $S^r \leq 0, 5...2 \%$
- o $S^r \leq 2, 5 \dots 3, 5 \%$
- \circ $S^r \leq 3.5 \%$

Редукционно-охладительная	установка	предназначена	для
пара.			

- о снижения температуры
- о перегрева
- о конденсации
- о повышения давления

Основными элементами газовоздушного тракта парового котла являются ...

- дутьевой вентилятор, воздухоподогреватель, горелки, топка, конвективные поверхности нагрева, дымосос
- экономайзер, барабан, опускные и подъемные трубы, пароперегреватель
- о топочная камера, конвективный газоход и конвективная шахта
- о топочная камера

В неэкономичных топочных устройствах котлоагрегатов коэффициент избытка воздуха равен ...

- 0 1,3 ... 1,5
- 0 1
- 0 1.05
- 0.5

Быстрое и экономичное сжигание топлива обеспечиваются ...

- мелким распылом, хорошим перемешиванием с окислителем и надежной стабилизацией горения
- крупным распылом, хорошим перемешиванием с окислителем и надежной стабилизацией горения
- хорошим перемешиванием с окислителем и надежной стабилизацией горения
- о за счет быстрого сгорания топлива

Если КПД котла «брутто» равен 92,5%, то потери теплоты с уходящими газами, от химической неполноты сгорания топлива, от механического недожога, через ограждения топки и конвективных газоходов и с физической теплотой шлаков суммарно равны ...

- 0 7,5
- 0 107.5
- 0 92,5
- \circ 0

Количество двуокиси углерода в $\kappa 2$, образующееся при полном сгорании 28 кг окиси углерода, в соответствии со стехиометрической реакцией $CO + 0.5O_2 = CO_2$ равно ...

- 0 44
- 0 32
- 0 1.6
- 0 4,4

Химический недожог топлива является следствием ...

- недостатка воздуха в зоне горения или плохого перемешивания воздуха с топливом
- о избытка воздуха в зоне горения или хорошего перемешивания воздуха с топливом
- о наличия твердых недогоревших частиц топлива
- о наличия CO₂, H₂, CH₄ в продуктах сгорания

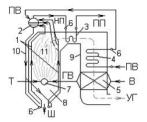
Размерностью объемного содержания компонентов дымовых газов является ...

- \circ $M^3/K\Gamma (M^3/M^3)$
- кДж (МДж)
- о кДж/кг (МДж/кг)
- o м³/кДж

Основным горючим элементом жидкого топлива является ...

- о углерод
- о кислород
- о водород
- o cepa

Среди всех потерь для котла потери теплоты с уходящими газами являются ...

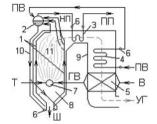

- о наибольшими
- о наименьшими
- о равными нулю
- о пренебрежимо малыми

Если содержание водорода, влажность и низшая теплота сгорания рабочей массы твердого топлива составляют $H^r=10$ %, $W^r=10$ %, $Q_i{}^r=13$ МДж/кг то высшая теплота сгорания твердого топлива в кДж/кг равна ...

- 0 15 500
- 0 13 500
- 0 13 000
- 0 31 000

Цифрой 8 на схеме вертикально – водотрубного барабанного парового котла с естественной циркуляцией обозначен(-а) ...

- о топка
- о горизонтальный газоход
- о воздухоподогреватель
- о конвективная шахта



Из-за отложений накипи на внутренних стенках экранных труб охлаждение стенок труб движущимися внутри них водой или паром ...

- о ухудшается
- о улучшается
- о не изменяется
- о ухудшается или не изменяется

Цифрой 9 на схеме вертикально – водотрубного барабанного парового котла с естественной циркуляцией обозначен(-a) ...

- о опускная конвективная шахта
- о горизонтальный газоход
- о топка
- о воздухоподогреватель

КПД котла «брутто» методом обратного баланса рассчитывается по формуле ...

$$\eta_{\kappa}^{\delta p} = 100 - (q_2 + q_3 + q_4 + q_5 + q_6)$$

$$\eta_{\kappa}^{\delta p} = 100 - (q_1 + q_2 + q_3 + q_4 + q_5 + q_6)$$

$$\eta_{\kappa}^{\delta p} = 100 + (q_1 + q_2 + q_3 + q_4 + q_5 + q_6)$$

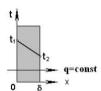
$$\eta_{\kappa}^{\delta p} = 100 + (q_2 + q_3 + q_4 + q_5 + q_6)$$

Промышленная печь предназначена для ...

- о термической обработки различных материалов (нагрева, плавления, сушки, прокалки и т.д.)
- о передачи теплоты аккумулирующим стенкам печи
- о отопления помещений
- о передачи теплоты воде или пару

15. ЗАДАЧИ

В закрытом сосуде 1 кг воздуха нагрели от $t_1=20~^{\circ}\mathrm{C}$ до $t_2=120~^{\circ}\mathrm{C}$. Определить количество подведенной теплоты. $c_p=1004,5~\mathrm{Дж/(кr\cdot K)}.$


- o q = 71,75 кДж/кг.
- \circ q = 100,45 Дж/кг.
- \circ q = 100,45 кДж/кг.

В цикле Карно температура подвода теплоты T_1 =1800 К, а термический КПД равен 0,6. Определить теоретическую температуру, при которой отводится теплота.

- o 720 K.
- о 1080 К.
- o 556 K.

Если λ =1 Bm/(nK), δ =100 мм, t_1 =500°С, t_2 =400°С, то плотность теплового потока q в $Bt/м^2$ твердого тела, показанного на рисунке, равна...

- 0 1000
- 0.001
- 0 100
- 0 10

Плоскую поверхность с температурой 340°C надо изолировать так, чтобы потери тепла не превышали 300 BT/m^2 . Температура на внешней поверхности изоляции 40 °C. Найти толщину изоляции. $\lambda_{\rm H3}=0,05$ $BT/(m\cdot K)$.

- о 0,5 м.
- о 0,05 м.
- о 0,1 м.

Найти коэффициент теплопередачи, если чугунный трубопровод толщиной $\delta_{\rm H}=9$ мм, $\lambda_{\rm H}=90$ Вт/(м·К) изолирован слоем пеношамота $\delta_{\rm H}=30$ мм, $\lambda_{\rm H}=0.3$ Вт/(м·К). Коэффициенты теплоотдачи: $\alpha_1=100$ Вт/(м²·К), $\alpha_2=10$ Вт/(м²·К), Расчет провести по формулам плоской стенки.

- \circ 4,76 BT/($M^2 \cdot K$)
- \circ 0,21 BT/(M^2 K).
- \circ 9.1 BT/($M^2 \cdot K$).

Стальная стенка, толщиной 10 мм с λ_{CT} = 50 Вт/(м·К) с двух сторон омывается жидкостью с коэффициентами теплоотдачи $\alpha_1 = 1000$ Вт/(м²·К) и $\alpha_2 = 10$ Вт/(м²·К). Определить коэффициент теплопередачи. \circ 10,1 Вт/(м²·К).

- \circ 9.88 BT/($M^2 \cdot K$).
- \circ 9,65 BT/($M^2 \cdot K$).

Определите тепловой поток в калорифере (теплообменном аппарате для нагрева воздуха в системе отопления), если в нем нагревается 0,5 кг/с воздуха от $t_1 = -10$ °C до $t_2 = 40$ °C. Теплоемкость воздуха принять равной 1,006 кДж/(кг·К).

- о 19,76 кВт.
- о 21,83 кВт.
- о 25,15 кВт.

Библиографический список

- Теплотехника: Учебное пособие / В.А. Кудинов, Э.М. Карташов, Е.В. Стефанюк. М.: КУРС: НИЦ ИНФРА-М, 2015. 424 с.: ил.; 60х90 1/16. (Высшее образование). (переплет) ISBN 978-5-905554-80-3 Режим доступа: http://znanium.com/catalog/product/486472
- 2. Круглов, Г. А. Теплотехника / Г. А. Круглов, Р. И. Булгакова, Е. С. Круглова. 4-е изд., стер. Санкт-Петербург: Лань, 2022. 208 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/263066
- 3. Петухов, Н.А. Краткий курс теплотехники / Новосиб.гос. аграр. ун-т; Инж.ин-т. Новосибирск, 2007. 231 с.
- 4. Кудинов, А. А. Тепломассообмен: учебное пособие / А.А. Кудинов. Москва: ИНФРА-М, 2022. 375 с. (Высшее образование: Бакалавриат). Текст: электронный. URL: https://znanium.com/catalog/product/1842529.
- 5. Ляшков, В. И. Теоретические основы теплотехники: Учеб. пособие для вузов / В.И. Ляшков, 2-е изд., испр. и доп. М.: КУРС: ИНФРА-М, 2019. -с: ил. ISBN 978-5-905554-85-8. Текст: электронный. URL: https://znanium.com/catalog/product/1002345. Режим доступа: по подписке.
- 6. Семенов, Ю. П. Теплотехника: учебник / Ю. П. Семенов, А. Б. Левин. 2-е изд. Москва: ИНФРА-М, 2019. 400 с. (Высшее образование: Бакалавриат). Текст: электронный. URL: https://znanium.com/catalog/product/1014755. Режим доступа: по полниске.
- 7. Кудинов, В. А. Теплотехника: Учебное пособие / В.А. Кудинов, Э.М. Карташов, Е.В. Стефанюк. М.: КУРС: НИЦ ИНФРА-М, 2019. 424 с.: ил. Текст : электронный. URL: https://znanium.com/catalog/product/977184
- 8. Амерханов, Р. А., Драганов Б. Х. Теплотехника: Учебник для вузов. 2-е изд., перераб. и доп.—М.: 2006. 432 с.: ил. ISBN 5-283-03245-0
- 9. Оболенский Н.В. Холодильное и вентиляционное оборудование: учеб. пособие для студ. вузов / Н.В. Оболевский, Е.А. Денисюк. М.: КолосС, 2006. 247 с. ISBN 5-9532-0170-2
- Цуранов, О.А. Холодильная техника и технология: учеб. для студ. вузов / О.А. Цуранов, А.Г. Крысин. – СПб.: Питер, 2004. – 446 с. ISBN 5-94723-965-5
- 11. Теплотехника: Учеб. для вузов / А.П. Баскаков, Б.В. Берг, О.К. Витт и др.; Под ред. А.П. Баскакова. 2-е изд., перераб. М.: Энергоатомиздат, 1991 . 224 с.

Содержание

		Стр
	Введение	3
1.	Основные понятия и определения	4
2.	Первый закон термодинамики	6
3.	Второй закон термодинамики	8
4.	Термодинамические процессы идеальных газов	9
5.	Круговые процессы	12
6.	Водяной пар	15
7.	Влажный воздух	17
8.	Основные понятия тепломассообмена	20
9.	Конвективный теплообмен	22
10.	Теплопередача через стенку	24
11.	Лучистый теплообмен	26
12.	Основы теплового расчета	29
13.	Теплообменные аппараты	31
14.	Теплоэнергетические установки и промышленная	32
	теплоэнергетика	
15.	Задачи	39
	Библиографический список	41

Составитель:

Пшенов Евгений Александрович

ТЕПЛОТЕХНИКА

тесты контроля остаточных знаний

предназначены для студентов очной и заочной форм обучения по направлениям подготовки:

Агроинженерия;

Эксплуатация транспортно-технологических машин и комплексов; Технология транспортных процессов; Профессиональное обучение (по отраслям); Продукты питания животного происхождения; Технология продукции и организация общественного питания

Печатается в авторской редакции

Компьютерная вёрстка Е.А. Пшенов

Подписано в печать 28 марта 2023 г Формат 84×108/32. Объем 2,75 уч.-изд. л Тираж100 экз. Изд. № . Заказ №

Отпечатано в минитипографии Инженерного института НГАУ 630039, г. Новосибирск, ул. Никитина 147