
ФГБОУ ВО Новосибирский ГАУ ИНЖЕНЕРНЫЙ ИНСТИТУТ

ДЕТАЛИ МАШИН, ОСНОВЫ КОНСТРУИРОВАНИЯ И ПОДЪЁМНО-ТРАНСПОРТНЫЕ МАШИНЫ

Ч.1. ДЕТАЛИ МАШИН И ОСНОВЫ КОНСТРУИРОВАНИЯ Примеры расчёта механических передач

Методические рекомендации к самостоятельной работе

Новосибирск 2021

Кафедра теоретической и прикладной механики

Составитель: Л.Н. Ишутина Рецензент: В.М. Гладченко

Детали машин, основы конструирования и подъёмно - транспортные машины. Ч.1. Детали машин и основы конструирования. Примеры расчёта механических передач. Методические рекомендации для самостоятельной работы / Новосиб. гос. аграр. ун-т. Инженерн. Ин-т;сост. Л.Н. Ишутина — Новосибирск, 2021. — 30 с.

В методических рекомендациях представлены примеры расчета механических передач.

Предназначены для самостоятельной работы студентов очной и заочной форм обучения Инженерного института НГАУ всех профилей и направлений.

Утверждены и рекомендованы к изданию методическим советом Инженерного института (протокол №11 от 28.06.2022 г.).

© ФГБОУ ВО Новосибирский ГАУ Инженерный институт, 2021

СОДЕРЖАНИЕ

l.	Пример расчета клиноременной передачи	4
2.	Пример расчета цепной передачи	8
3.	Пример расчета червячной передачи	15
1.	Пример расчета цилиндрической зубчатой передачи	20
5.	Пример расчета конической зубчатой передачи	25

1. ПРИМЕР РАСЧЕТА КЛИНОРЕМЕННОЙ ПЕРЕДАЧИ

Рассчитать передачу для привода компрессора. Передаваемая мощность $N=6~\mathrm{kBt}$ при числе оборотов ведущего вала $n_1=700$ об/мин и ведомого $n_2=500$ об/мин.

1. Определяется крутящий момент на ведущем валу

$$T_1 = 10^6 \cdot \frac{N}{\omega_1}$$
, H·MM

где, N- передаваемая мощность, кВт

 ω_1 - угловая скорость ведущего вала, 1/c

$$\omega_1 = \frac{\pi \cdot n_1}{30}$$

$$T_1 = 9,55 \cdot 10^6 \frac{N}{n_1} = 10^6 \cdot 9,55 \cdot \frac{6}{700} = 8,2 \cdot 10^4 \text{ H·мм}$$

2. По величине крутящего момента (T_1) выбирается тип ремня (таблица 1). Принимаем тип Б.

Таблица 1. Размеры ремней

Тип	T,	Площадь	Рекомендуемый диа-	Диапа-
ремня	Нм	сечения, мм ²	метр малого шкива Д $_1$,	зон дли-
			MM	ны, м
O (Z)	30	47	71, 80, 90	0,42,5
A	1560	81	110, 112, 125	0,564,0
Б (В)	50150	138	140, 160, 180	0,86,3
B (C)	120600	230	224, 250, 280	1,810
$\Gamma(D)$	4502400	476	355, 400, 450	3,1515
Д(Е)	16006000	692	560, 630, 710	4,518

3. По профилю ремня выбирается диаметр малого шкива $Д_1 = 160$ мм (таблица 1).

4. Определяется передаточное отношение без учета скольжения

$$u = \frac{\omega_1}{\omega_2} = \frac{n_1}{n_2}$$

где, ω_1 - угловая скорость ведущего вала, 1\c ;

 ω_2 - угловая скорость ведомого вала, 1\c;

 n_1- число оборотов ведущего вала, об/мин ;

n₂ — число оборотов ведомого вала, об/мин .

$$u = \frac{n_1}{n_2} = \frac{700}{500} = 1,4$$

5. Определяется диаметр большого шкива

$$\mathcal{I}_2 = \mathcal{I}_1 \cdot u = 160 \cdot 1, 4 = 224 \text{ MM}.$$

Округляем $Д_2$ до ближайшего стандартного значения (стандартные диаметры: 63, 71, 80, 90, 100, 112, 125, 140, 160, 180, 200, 224, 250, 280, 315, 355, 400, 450, 500, 560, 630, 710, 800).

$$Д_2 = 224$$
 мм.

6. Определяется расчетное межосевое расстояние

$$a_p = 1.5(\mathcal{I}_1 + \mathcal{I}_2) = 1.5(160 + 224) = 576$$
 mm.

7. Определяем расчетную длину ремня

$$L_{p} = 2a_{p} + \frac{\pi}{2}(\mathcal{A}_{1} + \mathcal{A}_{2}) + \frac{(\mathcal{A}_{2} - \mathcal{A}_{1})^{2}}{4a_{p}}$$

$$L_{\delta} = 2.576 + 1,57(160 + 224) + \frac{(224 - 160)^2}{4.576} = 1757 \text{ mm}.$$

Округляем L_p до ближайшего стандартного значения (стандартные длины ремней: 400, 450, 500, 600, 560, 630, 710, 800, 900, 1000, 1120, 1250, 1400, 1600, 1800, 2000, 2240, 2500, 2800, 3150, 4000, 4500, 5000, 5600, 6300, 7100, 8000, 9000, 10000, 11200, 12500, 14000, 16000).

Принимаем L = 1800 мм.

8. Уточняется межосевое расстояние

$$a = 0.25 \left\{ L - \frac{\pi}{2} (\mathcal{A}_1 + \mathcal{A}_2) + \sqrt{\left[L - \frac{\pi}{2} (\mathcal{A}_1 + \mathcal{A}_2)\right]^2 - 2(\mathcal{A}_2 - \mathcal{A}_1)^2} \right\} =$$

$$= 0.25 \left\{ 1800 - 1.57 \cdot 384 + \sqrt{\left[1800 - 1.57 \cdot 384\right]^2 - 2 \cdot 64^2} \right\} = 598 \text{ MM}$$

9. Определяется угол обхвата малого шкива

$$\alpha = 180^{\circ} - 60^{\circ} \frac{\mathcal{I}_2 - \mathcal{I}_1}{a} = 180^{\circ} - 60^{\circ} \frac{224 - 160}{598} \approx 174^{\circ}$$

10. Определяется окружная скорость ремня

$$V = \omega_1 \cdot \frac{\mathcal{I}_1}{2}$$
; $\omega_1 = \frac{\pi \cdot n_1}{30} = \frac{3,14 \cdot 700}{30} = 73,3$ 1/c
 $V = \omega_1 \cdot \mathcal{I}_1/2 = 73,3 \cdot 160/2 = 5864 \text{ mm/c} = 5,9 \text{ m/c}$

11. Определяется окружное усилие, которое может передать один ремень выбранного типа (таблица 2).

Интерполируя, находим

$$p_0 = p_{02} + \frac{p_{01} - p_{02}}{5} \cdot (V_{02} - V)$$
$$p_0 = 315 + \frac{366 - 315}{5} \cdot 4,1 \approx 357 \text{ H}$$

12. Определяется допускаемое окружное усилие на один ремень

$$[p] = p_o \cdot C_\alpha \cdot C_p ,$$

где C_{α} - коэффициент угла обхвата;

$$C_{\alpha} = 1 - 0.003(180^{\circ} - \alpha) = 1 - 0.003(180^{\circ} - 174^{\circ}) \approx 0.98$$

 $C_{p}\,$ - коэффициент нагрузки. При переменной нагрузке

 $C_p = 0.9$. При равномерной нагрузке $C_p = 1$.

$$[p] = 357 \cdot 0.98 \cdot 1 = 350 \text{ H}$$

13. Определяется окружное усилие в передаче

$$P = 1000 \cdot \frac{N}{V} = 1000 \cdot \frac{6}{5.9} \approx 1017$$
 H

14. Расчетное число ремней

$$Z = P / [p] = 1017 / 350 \approx 3$$
 mit.

Таблица 2. Значения ро, Н

	гаолица .	2. Sharchin p ₀ , 11					
Тип	Д1,			V,	м/с		
ремня	MM	5	10	15	20	25	30
	71	112	95	81	68	56	-
O (Z)	80	124	107	94	80	66	-
	90	134	116	104	86	75	62
	100	190	160	138	115	91	-
A	112	210	182	160	137	112	83
	125	230	200	177	155	132	105
	140	322	270	230	191	-	-
Б (В)	160	366	315	275	236	196	149
	180	402	351	310	272	230	184
	224	630	536	453	393	318	235
B (C)	250	696	602	530	460	384	302
	280	756	663	590	520	444	383
	355	1350	1140	990	840	680	513
$\Gamma(D)$	400	1510	1300	1150	1000	840	670
	450	1650	1440	1290	1140	980	816
	560	2280	1990	1760	1550	1330	1090
Д(Е)	630	2480	2180	1960	1740	1520	1280
	710	2640	2360	2120	1910	1690	1440

15. Усилие действующее на валы.

$$F_k = 2 \cdot \sigma_0 \cdot A \cdot z \cdot \sin(\alpha/2)$$

где, A - площадь сечения ремня, равная для профиля E 138 мм² (таблица 1);

 σ_0 - напряжения предварительного натяга ремня, для клиновых ремней $\sigma_0 = 1,6\,$ МПа;

$$F_k = 2 \cdot 1,6 \cdot 138 \cdot 3 \cdot \sin 87^0 \approx 1320 \text{ H}$$

2. ПРИМЕР РАСЧЕТА ЦЕПНОЙ ПЕРЕДАЧИ

Рассчитать цепную передачу для ленточного транспортера. Передаваемая мощность N=8 кВт при частоте вращения ведущего вала $n_1=600$ об/мин, ведомого - $n_2=350$ об/мин. Расположение передачи под углом 45° , работа в две смены, смазка периодическая.

- **1.** По назначению и условиям работы выбирается тип цепи (роликовые цепи наиболее распространенные, применяются при V \leq 20 м/с, зубчатые цепи рекомендуются при V \leq 30 м/с). Выбираем роликовую цепь.
 - 2. Определяется передаточное отношение

$$u = n_1 / n_2 = \omega_1 / \omega_2 = 600 / 350 \approx 1,7$$

3. Выбирается число зубьев малой звездочки z_1 по передаточному отношению (таблица3).

Таблица 3. Значения z₁

Тип цепи	Значение и						
	12	12 23 34 45 56 6					
Роликовая	3127	2725	2523	2321	2117	1715	
Зубчатая	3532	3230	3027	2723	2319	1917	

Принимаем $z_1 = 27$ зуб.

4. Определяется число зубьев большой звездочки

$$z_2 = z_1 \cdot u = 27 \cdot 1,7 \approx 47$$
 зуб.

5. Определяется крутящий момент на малой звездочке

$$T_1 = 10^6 \cdot \frac{N}{\omega_1}$$
 , H·MM

где, N- передаваемая мощность, кВт

 ω_1 - угловая скорость ведомого вала, 1/с $\omega_1 = \frac{\pi \cdot n_1}{30}$

$$T_1 = 9,55 \cdot 10^6 \frac{N}{n_1} = 10^6 \cdot 9,55 \cdot \frac{8}{600} = 1,3 \cdot 10^5 \text{ H·mm}$$

- **6.** Определяется допускаемое удельное давление [P] на шарнире цепи (таблица 4). Предполагая, что шаг цепи $\,$ t будет в пределах 12,7...25,4 мм, находим, что $\,$ [P] = 24 $\,$ МПа.
 - 7. Определяется эксплуатационный коэффициент.

$$K_9 = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 ,$$

- где K_1 коэффициент нагрузки (при равномерной нагрузке $K_1=1,$ при переменной $K_1=1,5$);
 - K_2 коэффициент смазки (при картерной смазке $K_2=0.8$, при периодической $K_2=1.4$) ;
 - K_3 учитывает способ регулировки натяжения цепи (при автоматической регулировке $K_3 = 1$, при периодической $K_3 = 1,25$);
 - K_4 учитывает расположение передачи (при наклоне до 60° K_4 = 1, при наклоне больше 60° K_4 = 1,25);
 - K_5 учитывает число смен работы (при односменной работе $K_5 = 1$, при двух сменной $K_5 = 1,25$).

В нашем случае

$$K_9 = 1 \cdot 1, 4 \cdot 1, 25 \cdot 1 \cdot 1, 25 \approx 2, 2$$

Таблица 4. Значения $\llbracket P
rbracket$, МПа

	•	L J /		
n_1	t = 12,7	725,4	t = 31,7	550,8
об/мин	Роликовая	Зубчатая	Роликовая	Зубчатая
50	34	20	34	20
200	30	17	27	16
400	27	15	22	14
600	24	14	18	12
800	22	13	17	10
1000	20	12	16	9
1200	18	10	15	8
1600	17	9	=	=
2000	16	6	-	-

8. Определяется шаг цепи

$$t \le 2.83\sqrt[]{\frac{T_1K_9}{[p]mz_1}}$$
 - для роликовой цепи;

$$t \le 3,3\sqrt[3]{rac{T_1K_9}{[p]\psi z_1}}$$
 - для зубчатой цепи;

где m - число рядов цепи, принимаем m = 1

 ψ - коэффициент ширины, $\psi = 2...3$.

Получаем

$$t \le 2.8\sqrt[3]{\frac{1.3 \cdot 10^5 \cdot 2.2}{24 \cdot 1 \cdot 27}} \approx 21$$
 MM.

Принимаем цепь роликовую ПР-19,05-31,8 с шагом t=19,05 мм (таблица 5).

9. Определяется ширина цепи (для зубчатых цепей)

$$s = t \cdot \psi$$

Полученное значение округляется до ближайшего стандартного значения (таблица 6).

Таблица 5. Цепи роликовые однорядные (ГОСТ 13568 – 81)

Обозначение цепи	t	b ₃ не ме- нее	d ₁	d ₃	h, не более	b ₇ , не более	b ₆ , не более	Разру- шающая нагруз- ка, кН, не менее	Масса 1 м цепи q, кг
ПР-8-4,6	8,0	3,00	2,31	5,0	7,5	12	7	4,6	0,20
ПР-9,525-9,1	9,525	5,72	3,28	6,35	8,5	17	10	9,1	0,45
ПР-1 2,7-9-1	12,7	2,40	3,66	7,75	10,0	8,7		9	0,30
ПР-12,7-9-2	12,7	3,30	3,66	7,75	10,0	12	7	9	0,35
ПР-12,7-18,2-1	12,7	5,40	4,45	8,51	11.8	19	10	18,2	0,65
ПР-12,7-18,2-2	12,7	7,75	4,45	8,51	11,8	21	11	18,2	0,75
ПР-15,875-22,7-1	15,875	6,48	5,08	10,16	14,8	20	11	22,7	0,80
ПР-15,875-22,7-2	15,875	9,65	5,08	10,16	14,8	24	13	22,7	1,00
ПР-19,05-31,8	19,05	12,70	5,94	11,91	18,2	33	18	31,8	1,9
ПР-25,4-60	25,4	15,88	7,92	15,88	24,2	39	22	60	2,6
ПР-31,75-89	31,75	19,05	9,53	19,05	30,2	46	24	89	3,8
ПР-38,1-127	38,1	25,4	11,1	22,23	36,2	58	30	127	5,5
ПР-44,45-172,4	44,45	25,40	12,70	25,40	42,4	62	34	172,4	7,5
ПР-50,8-227	50,8	31,75	14,27	28,58	48,3	72	38	227	9,7
ПР-63,5-354	63,5	38,10	19,84	39,68	60,4	89	48	354	16,0

10. Определяется межосевое расстояние (если не задано)

$$a \approx 50 t = 50 \cdot 19,05 = 952,5 \text{ MM} \approx 0,95 \text{ M}$$

11. Определяется окружное усилие

$$P = \frac{2\pi T_1}{z_1 t} = \frac{2 \cdot 3.14 \cdot 1.3 \cdot 10^5}{27 \cdot 19.05} \approx 1.6 \cdot 10^3$$
 H

12. Определяется окружная скорость цепи

$$V = \frac{t \cdot z_1 \cdot n_1}{60} = \frac{19,05 \cdot 27 \cdot 600}{60} = 5143,5 \text{ mm/c} = 5,14 \text{ m/c}$$

13. Определяется общее усилие, действующее на цепь при работе передачи

$$P_0 = P~K_1 + q~V^2 + 10q \cdot a \cdot K_p~,$$

где q - масса 1 м цепи, кг (таблицы 5, 6);

- K_1 коэффициент нагрузки (при равномерной нагрузке $K_1=1$, при переменной $K_1=1,5$);
- K_{p} учитывает расположение передачи (для горизонтальных передач
 - $K_p=6,$ при угле наклона до $60^\circ~K_p=1,5,$ для вертикальных передач $K_p=1);$
 - V окружная скорость цепи, м/с;
- а межосевое расстояние, м.

В нашем примере

$$P_0 = 1 \cdot 1,6 \cdot 10^3 + 1,5 \cdot 5,14^2 + 10 \cdot 1,5 \cdot 0,95 \cdot 1,5 \approx 1660$$
 H.

Таблица 6. Цепи зубчатые

140011144 00 140111 350 141210								
Марка	Шаг р,	Ширина b,	Масса 1 м q,	Разрушающая				
	MM	MM	кг/м	нагрузка Q_{p} , к H				
		22,5	1,3	24				
3-12,7-29	12,7	28,5	1,6	29				
		34,5	2,0	34				
		30	2,2	39				
3-15,875	15,875	38	2,7	48				
		46	3,3	57				
		45	3,9	72				
3-19,05-87	19,05	57	4,9	87				
		69	5,9	103				
		57	6,5	116				
3-25,4-138	25,4	69	7,9	138				
		81	9,3	163				
		60	10,0	171				
3-31,75-202	31,75	81	11,6	202				
		93	13,3	235				

14. Определяется запас прочности цепи

где Q_p - разрушающая нагрузка выбранной цепи в H (таблицы 5.6).

Получаем: $n = 31800 / 1660 \approx 19$.

Полученное значение сравниваем с рекомендуемым [n] (таблица 7). В нашем случае [n] ≈ 10 . Таким образом n > [n], что и требуется.

Таблица 7. Рекомендуемые значения запаса прочности, [n]

Шаг t,			n_1 , o	б/мин		
MM	50	100	300	500	750	1000
12,7	7,1	7,3	7,9	8,5	9,3	10,0
15,875	7,2	7,4	8,2	8,9	10,0	10,8
19,05	7,2	7,5	8,4	9,4	10,7	11,7
25,4	7,3	7,6	8,9	10,2	12,0	13,3
31,75	7,4	7,8	9,4	11,0	13,0	15,0
38,1	7,5	8,0	9,8	11,8	14,0	-
44,45	7,6	8,1	10,3	12,5	-	-
50,8	7,6	8,3	10,8	-	-	-

15. Определяется усилие, действующее на валы $F_{\pi} = 1, 2 \cdot P_0 = 1, 2 \cdot 1660 \approx 2000$ H.

16. Определяются размеры звездочек

диаметр делительной окружности:

$$D_{\ddot{a}} = \frac{t}{\sin \frac{180^{\circ}}{z}}$$

ведущей звездочки;

$$D_{a1} = \frac{t}{\sin \frac{180^{\circ}}{z_1}} = \frac{19,05}{\sin \frac{180^{\circ}}{27}} = 164 \text{ mm}$$

ведомой звездочки;

$$D_{a2} = \frac{t}{\sin \frac{180^{\circ}}{z_2}} = \frac{19,05}{\sin \frac{180^{\circ}}{46}} = 279 \text{ MM}$$

диаметр окружности выступов:

при z ≤ 30

$$D_{a} = \frac{t}{tg \frac{180^{\circ}}{7}} + 1.1 \cdot d_{1} ,$$

где, d₁ – диаметр ролика, мм (таблица 5)

при z → 30

$$D_{\hat{a}} = \frac{t}{tg \frac{180^{\circ}}{7}} + 0.96 \cdot p$$

ведущей звездочки;

$$D_{a1} = \frac{t}{tg \frac{180^{\circ}}{z_1}} + 1.1 \cdot d_1 = \frac{19.05}{tg \frac{180^{\circ}}{27}} + 1.1 \cdot 11.91 = 176 \text{ mm}$$

ведомой звездочки;

$$D_{\hat{a}2} = \frac{t}{tg\frac{180^{0}}{z_{2}}} + 0.96 \cdot p = \frac{19.05}{tg\frac{180^{0}}{46}} + 0.96 \cdot 19.05 = 297 \text{ mm}$$

диаметр окружности впадин:

$$D_i = D_{\partial} - (d_1 - 0.175\sqrt{D_{\partial}})$$

ведущей звездочки;

$$D_{i1} = D_{\partial 1} - (d_1 - 0.175\sqrt{D_{\partial 1}}) = 164 - (11.91 - 0.175\sqrt{164}) =$$

=154,3*мм*

ведомой звездочки;

$$D_{i2} = D_{\partial 2} - (d_1 - 0.175\sqrt{D_{\partial 2}}) = 279 - (11.91 - 0.175\sqrt{279}) = 270 \text{ MM}.$$

3. ПРИМЕР РАСЧЕТА ЧЕРВЯЧНОЙ ПЕРЕДАЧИ

Рассчитать закрытую червячную передачу (редуктор) для привода подъемного крана. Передаваемая мощность N=1,2 кВт при угловых скоростях ведущего вала $\omega_1=150~1/c$, ведомого $\omega_2=4~1/c$. Срок эксплуатации передачи T=10000 ч, температура окружающего воздуха $t_{\text{в}}=20^{\circ}\text{C}$.

1. Определяется передаточное отношение

 $u = \omega_1 / \omega_2 = n_1 / n_2 = 150 / 4 \approx 37$

2. По и выбирается заходность червяка $z_1 = 1$ (табл.8).

Таблица 8. Заходность червяка z₁

u	78	913	1424	2527	2835	35
\mathbf{z}_1	4	4	2;4	2	1;2	1

3. Определяется число зубьев червячного колеса

$$z_2 = z_1 \cdot u = 37 \times 1 = 37$$
 зуб.

4. Выбираются материалы для червяка и червячного колеса. Для червяка принимаем сталь 45 с закалкой (рекомендуется стали 45, 50, 40X, 40XH с закалкой или 15X, 20X, 12XH3A с цементацией и закалкой). Для колеса - безоловянистую бронзу Бр. АЖ9-4Л (табл. 9). Чугуны рекомендуются для открытых тихоходных передач.

Таблица 9. Материалы для колес

таолица 9. Материалы для колес							
Материал	Способ литья	Допускаемое напряжение, МПа					
		$[\sigma_0]_{ m F}$	$[\sigma_{-1}]_F$	[σ]` _н			
Бр.ОФ10-1	В кокаль	57	41	185			
Бр.ОНФ	Центробежный	64	45	205			
Бр.01С6-5-3	В кокаль	45	32	180			
Бр.АЖ9-4Л	В кокаль	85	69	160			
СЧ-15	В песчаную форму	47	23	85			
СЧ-20	В песчаную форму	47	29	90			

5. Определяется межосевое расстояние

$$a \ge \left(\frac{z_2}{q} + 1\right)^3 \sqrt{\left(\frac{170q}{z_2[\sigma]}\right)^2 T_{p2}}$$

где $q = d_1 / m$ (берется из стандартного ряда: 6,3; 8; 10; 12,5; 16; 20;

25; чаще q = 8 или 10). Принимаем q = 10.

 T_{p2} - расчетный крутящий момент на червячном колесе

$$T_{p2} = T_2 \cdot K ;$$

Т₂ - крутящий момент на колесе

$$T_2 = 10^6 \frac{N}{\omega_2} = 9,55 \cdot 10^6 \frac{N}{n_2} = 10^6 \cdot \frac{1,2}{4} = 3 \cdot 10^5$$
 H*MM

K - коэффициент, $K = 1 + (z_2 / Q)^3$;

Q - коэффициент деформации червяка (табл.10).

Таблица 10. Значения О

z_1		q							
	6,3	6,3 8 10 12,5 16							
1	63	72	108	147	194				
2	50	57	86	117	163				
4	42	47	70	94	131				

При
$$z_1=1$$
 и $q=10$ $Q=108$, тогда $K=1+(37/108)^3\approx 1$, $T_{p2}=3\times 10^5\times 1=3\times 10^5$ Нмм.

 $[\sigma]_{\scriptscriptstyle H}$ - допускаемое контактное напряжение

$$[\sigma]_{H} = [\sigma]_{H} \cdot K_{H}$$
,

 $[\sigma]^{`}_{H}$ - см. табл. 9. K_{H} - коэффициент режима работы $K_{H}=\sqrt[8]{rac{10^{7}}{N_{p}}}$

$$K_{_{\scriptscriptstyle H}}=\sqrt[8]{\frac{10^7}{N_{_{\scriptscriptstyle p}}}}$$

 $N_{\rm p}$ - рабочее число циклов за время эксплуатации

$$N_p$$
 - $60 \cdot T \cdot n_2$,

Т - заданный срок эксплуатации (в нашем примере Т = 10000 ч);

n₂ - частота вращения червячного колеса, об/мин

 $n_2 = 30 \ \omega_2 \ / \ \pi = 30 \times 4 \ / \ 3,14 \approx 38 \ \text{об/мин},$ $N_p = 60 \times 38 \times 10000 = 23 \times 10^6 \ \text{цикл},$ $\mathcal{K}_{_{\mathcal{H}}} = \sqrt[8]{\frac{10^7}{23 \times 10^6}} \approx 1,1 \ .$

Если срок эксплуатации не задан, $K_{\text{H}}=1$ Получаем:

$$[\sigma]_{H} = 160 \times 1, 1 = 175 \text{ M}\Pi a$$
.

Тогда

$$a \ge \left(\frac{37}{10} + 1\right)\sqrt[3]{\left(\frac{170 \times 10}{37 \times 175}\right)^2 3 \times 10^5} \approx 140$$
 mm.

6. Определяется модуль зацепления

$$m = \frac{2a}{q + z_2} = \frac{2 \times 140}{10 + 37} \approx 6$$
 MM.

Принимаем стандартный модуль m = 6,3 мм (из ряда; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16; 20).

7. Уточняется межосевое расстояние

$$a = \frac{m}{2}(q + z_2) = \frac{6,3}{2}(10 + 37) = 148$$
 mm.

- **8.** Определяются геометрические размеры червяка и червячного колеса:
 - а) делительные диаметры

$$d_1 = mq = 6.3 \times 10 = 63$$
 mm
 $d_2 = mz_2 = 6.3 \times 37 = 238.1$ mm

б) диаметры головок витков и зубьев

$$\begin{aligned} &d_{a1} = m(q+2) = 6.3 \times 12 = 75.6 \quad \text{mm} \\ &d_{a2} = m(z_2+2) = 6.3 \times 39 = 245.7 \quad \text{mm} \end{aligned}$$

в) диаметры ножек витков и зубьев

$$d_{\rm fl} = m(q - 2.4) = 6.3 \times 7.6 = 47.8 \quad \text{mm}$$

$$d_{\rm f2} = m(z_2 - 2.4) = 6.3 \times 34.6 = 217.9 \quad \text{mm}$$

Длина червяка

$$B_1 = (11 + 0.06z_2)m = (11 + 0.06 \times 37) \times 6.3 \approx 80$$
 mm

для 4 заходных червяков $B_1 = (12,6 + 0,09z_2)m$

Угол подъема винтовой линии червяка

$$tg\lambda = z_1 / q = 1 / 10 = 0,1$$
; $\lambda \approx 6^{\circ}$.

Ширина червячного колеса

$$B_2 = 0.7d_{a1} = 0.7 \times 75.6 = 55$$
 MM.

Наибольший диаметр червячного колеса

$$d_{am2} = d_{a2} + 6m / (z_1 + 2) = 245,7 + 6 \times 6,63 / (1 + 2) \approx 258$$
 mm

9. Производится проверочный расчет зубьев червячного колеса на изгиб

$$\sigma_F = \frac{1,2T_{p2} \cdot Y_F \cdot \gamma}{m \cdot d_2 \cdot \hat{a}_2} \leq [\sigma]_F$$

где γ - коэффициент износа зубьев, для закрытых передач $\gamma=1$, для открытых - $\gamma=1,5$;

 Y_F - коэффициент формы зуба $Y_F = 2.3$ (табл.11).

 $[\sigma]_F$ - допускаемое напряжение на изгиб. Для реверсивных передач (как в нашем случае),

$$[\sigma]_F = [\sigma_{-1}]_F \cdot K_F$$
,

(для нереверсивных - $[\sigma]_F = [\sigma_0]_F \cdot K_F$),

$$[\sigma_{-1}]_F$$
 и $[\sigma_0]_F$ - см. табл. 12.

K_F - коэффициент режима работы

$$K_F = \sqrt[9]{\frac{10^6}{N_p}} = \sqrt[9]{\frac{10^6}{23 \times 10^6}} \approx 0.9$$
.

Если срок эксплуатации не задан $K_F = 1$.

$$[\sigma]_F = 69 \times 0.9 = 62$$
 M Π a

$$\sigma_F = \frac{1.2 \times 3 \times 10^5 \times 2.3 \times 1}{6.3 \times 233.1 \times 55} = 11 \text{ M}\Pi a < 62 \text{ M}\Pi a$$

т.е. прочность по изгибу обеспечивается.

Таблица 11. Значения У г

\mathbf{z}_2	2533	3343	4360	6080	более 80
Y_{F}	2,4	2,3	2,2	2,1	2

- 10. Определяются усилия, действующие в зацеплении:
- а) окружное усилие на червячном колесе, равное осевому усилию на червяке.

$$F_2 = F_{a1} = 2T_2 / d_2 = 2 \cdot 3 \cdot 10^5 / 233, 1 \approx 2600$$
 H;

б) окружное усилие на червяке, равное осевому усилию на червячном колесе,

$$F_1 = F_{a2} = 2 T_1 / d_1$$
.

где

$$T_1 = 10^6 \frac{N}{\omega_1} = 9,55 \cdot 10^6 \frac{N}{n_1} = 10^6 \frac{1,2}{150} = 8 \cdot 10^4 \text{ H*mm}$$

$$F_1 = F_{a2} = 2 \cdot 8 \cdot 10^4 / 63 = 2500$$
 H;

в) радиальные усилия на червяке и колесе

$$F_{R1} = F_{R2} = F_2 \operatorname{tg}\alpha = 2600 \cdot 0.36 \approx 900 \text{ H}$$

(α - угол зацепления, $\alpha = 20^{\circ}$).

11. Определяется скорость скольжения в передаче

$$V_s = \omega_1 \frac{d_1}{2\cos\lambda} = \frac{150 \cdot 63}{2 \cdot 0.93} \approx 4900 \text{ mm/c} = 4.9 \text{ m/c}$$

$$\omega = \frac{\pi \cdot n}{30}$$

12. Определяем угол трения между червяком и червячным колесом (табл.12), $\rho \approx 1.5^{\circ}$.

Таблица 12. Значения ρ^0

V_s	0,5	1	1,5	2	3	4	7	10
м/с								
$ ho^0$	3,5	3	2,5	2	1,5	1,5	1	1

13. Определяется КПД передачи

$$\eta = 0.95 \frac{tg\lambda}{tg(\lambda + \rho)} = 0.95 \frac{tg6^{\circ}}{tg7.5^{\circ}} = 0.95 \frac{0.1}{0.13} \approx 0.75$$

14. Определяется необходимая поверхность охлаждения (для закрытых передач)

$$S = \frac{1000N(1-\eta)}{K_t(t_M - t_e)} \quad M^2$$

где K_t - коэффициент теплопередачи корпуса, для чугунного корпуса $K_t = 10 \; B_T/m^2 c$;

 $t_{\scriptscriptstyle M}$ - допускаемая температура масла, рекомендуется $t_{\scriptscriptstyle M} \approx (70..80)^{\circ} C;$ $t_{\scriptscriptstyle B}$ - температура окружающего воздуха, по условию задачи $t_{\scriptscriptstyle B} = 20^{\circ} C;$

$$S = \frac{1000 \cdot 1, 2 \cdot (1 - 0,75)}{10(80 - 20)} \approx 0,5 \quad M^2$$

4. ПРИМЕР РАСЧЕТА ЦИЛИНДРИЧЕСКОЙ ЗУБЧАТОЙ ПЕРЕДАЧИ

Рассчитать закрытую цилиндрическую косозубую зубчатую передачу (редуктор) для привода конвейера. Передаваемая мощность $N=16~\mathrm{kBt}$,частота вращения ведущего вала $n_1=600~\mathrm{of/muh}$ и ведомого - $n_2=300~\mathrm{of/muh}$.

1. Определяется передаточное отношение

$$u=\omega_1$$
 / $\omega_2=n_1$ / $n_2=600$: $300=2$

2. Выбирается материал для изготовления зубчатых колес. Для тяжелонагруженных ответственных передач с повышенными требованиями к габаритам рекомендуется стали 20ХН, 12ХН2, 12ХН3А с цементацией и закалкой, твердостью HB > 350. При средних нагрузках обычно применяются стали 40Х, 40ХН, 40ХФА с объемной или поверхностной закалкой, твердостью HB > 350. Для средне- и малонагруженных передач применяют стали 40,45, 50, 40Х, 40ХН с нор-

мализацией или улучшением, твердостью HB<350. В этом случае твердость материала шестерни должно быть на 20...30 единиц (HB) выше, чем колеса.

Выбираем для шестерни сталь 45 с улучшением, для колеса - 45 с нормализацией.

3. Определяется крутящий момент на колесе

$$T_2 = 10^6 \frac{N}{\omega_2} = 9,55 \cdot 10^6 \frac{N}{n_2} = 9,55 \cdot 10^6 \frac{16}{300} = 5 \cdot 10^5$$
 HMM.

4. Определяется расчетный крутящий момент на колесе

$$T_{p2} = T_2 \cdot K = 5 \cdot 10^5 \cdot 1, 4 = 7 \cdot 10^5$$
 HMM,

где K - коэффициент дополнительных нагрузок, K = 1,4...1,5.

5. Определяется межосевое расстояние из условия прочности по контактным напряжениям по формулам:

$$a \ge (u+1)\sqrt[3]{\left(\frac{310}{u[\sigma]_{H}}\right)^{2}\frac{T_{\rho 2}}{\psi_{a}}}, \text{ MM}$$

для прямозубых передач и

$$a \ge (u+1)\sqrt[3]{\left(\frac{270}{u[\sigma]_{H}}\right)^{2}\frac{T_{\rho 2}}{\psi_{a}}}, \text{ MM}$$

для косозубых и шевронных передач,

где ψ_a - коэффициент ширины (для прямозубых - ψ_a = 0,15...0,25; для косозубых ψ_a = 0,25...0,4; для шевронных - ψ_a = 0,4...0,8).

 $[\sigma]_{\scriptscriptstyle H}$ - допускаемое контактное напряжение

$$\left[\sigma\right]_{H} = \frac{\sigma_{H}}{\left[n\right]_{H}} \cdot K_{H} ,$$

 $\sigma_{\scriptscriptstyle H}$ - предел контактной выносливости (табл.13);

 $[n]_{H}$ - запас прочности

Для стали 45 с нормализацией $[n]_{\rm H} = 1,2$ и

$$\sigma_{H} = 2HB + 70 = 2 \cdot 190 + 70 = 450 \text{ M}\Pi a$$

К_н - коэффициент режима работы

Если срок эксплуатации не задан, $K_{\rm H} = 1$.

Таблица 13. Материал для зубчатых колес

Марка	Термообра-	Твер-	$\sigma_{\scriptscriptstyle \mathrm{H}}$,	[n	σ_{p} ,	[n
стали	ботка	дость	МПа] _H	МПа	$]_{F}$
40	Нормализация	HB 180				
45	Нормализация	HB 190				
45, 50	Улучшение	HB 200	2HB +	1,	1,8HB	2
40X, 40XH	Улучшение	HB 260	70	2		
40X, 40XH	Нормализация	HB 220				
40X,	Объемная	HPC 50			520	
40XH,	закалка		18HPC+	1,		2
40ХФА	Поверхност-	HPC 55	200	2	700	
40XH,	ная					
40X,	закалка					
40ХФА						
20XH,	Цементация с	HPC 60	23HPC	1,	950	1,
12XH2,	закалкой			3		8
12XH3A						

$$[\sigma] = \frac{450}{1,2} \cdot 1 = 375$$
 M Π a,
 $a = (2+1) \cdot \sqrt[3]{\left(\frac{270}{2 \cdot 375}\right)^2 \cdot \frac{7 \cdot 10^5}{0,3}} \approx 200$, MM

6. Определяется нормальный модуль зацепления

$$m_n = (0,01...0,02)a \;, \quad {\tt MM}$$

$$m_n = (0,01...0,02)a = 0,015*200 = 3$$
 mm

Округляется до ближайшего стандартного значения (стандартный ряд: 1; 1,25; 1,5; 1,75; 2; 2,25; 2,5; 3; 3,5; 4; 4,55; 5,5; 6; 7; 8; 9; 10; 12; 14; 16).

Принимаем $m_n = 3$ мм

7. Определяется ширина зубчатых колес

$$B = \psi_a \cdot a$$
 , мм (значение ψ_a см. в пункте 5);

$$B = 0.3 \cdot 200 = 60$$
 MM

8. Определяется число зубьев шестерни

$$z_{1} = \frac{2a\cos\beta}{m_{n}(u+1)}, 3y6.$$

$$z_{1} = \frac{2a\cos\beta}{m_{n}(u+1)} = \frac{2 \cdot 200 \cdot \cos 12^{0}}{3(2+1)} = 44 \quad 3y6.$$

9. Определяется число зубьев колеса

$$z_2 = z_1 \cdot u$$
 , 3y6.
 $z_2 = 44 \cdot 2 = 88$ 3y6.

10. Производится проверочный расчет зубьев на изгиб

$$\sigma_F = \frac{2K_F \cdot T_{\rho 2} \cdot Y_F}{\mathbf{s} \cdot \mathbf{z}_2 \cdot m_n^2} \leq [\sigma]_F$$

 K_F - учитывает дополнительные нагрузки, $K_F = 1,3...1,5$ (при симметричном относительно опор расположении зубчатых колес);

$$K_F = 1,3$$

Y_F (см. таблицу 14);

[σ]_F (см. таблицу 13).

$$\begin{split} [\sigma]_F &= \sigma_F \, / \, [n]_F \\ \sigma_F &= 1,8 \; HB = 1,8 \cdot 190 \approx 340 \quad M\Pi a \; , \quad [n]_F = 2. \\ [\sigma]_F &= 340 \, / \, 2 = 170 \quad M\Pi a \end{split}$$

Таблица 14 - Значения У г

\mathbf{z}_1	17	20	25	30	40	50	60	80	100
Y_F	4,3	4,1	3,9	3,8	3,7	3,65	3,6	3,6	3,6

$$\sigma_F = \frac{2 \cdot 1, 3 \cdot 7 \cdot 10^5 \cdot 3, 7}{60 \cdot 88 \cdot 3^2} = 142M\Pi a \le [\sigma]_F$$

- 11. Определяются размеры зубчатых колес:
- а) делительные диаметры

$$d_1 = \frac{m_n z_1}{\cos \beta} = \frac{3 \cdot 44}{\cos 12^0} = 135 \text{ MM}$$

$$d_2 = \frac{m_n z_2}{\cos \beta} = \frac{3 \cdot 88}{\cos 12^0} = 270$$
 ,mm

б) диаметры головок зубьев

$$d_{a1} = \frac{m_n(z_1 + 2)}{\cos \beta} = \frac{3(44 + 2)}{0.98} = 141 \text{ MM}$$

$$d_{a2} = \frac{m_n(z_2 + 2)}{\cos \beta} = \frac{3(88 + 2)}{0.98} = 275.5$$
 , mm

в) диаметры ножек зубьев

$$d_{f1} = \frac{m_n}{\cos \beta} (z_1 - 2.5) = \frac{3(44 - 2.5)}{0.98} = 127 \text{ MM}$$

$$d_{f2} = \frac{m_n}{\cos \beta} (z_2 - 2.5) = \frac{3(88 - 2.5)}{0.98} = 262$$
 mm

г) межосевое расстояние

$$a = \frac{m_n}{2\cos\beta} (z_1 + z_2) = \frac{3(44 + 88)}{2 \cdot 0.98} = 202$$
 , mm

- 12. Определяются усилия в зацеплении:
- а) окружное усилие

$$F = 2T_2 / d_2 = \frac{2 \cdot 5 \cdot 10^5}{270} = 3704 \text{ H}$$

б) радиальное усилие

$$F_r = F tg\alpha / cos\beta = \frac{3704 \cdot 0.36}{0.98} = 1360 H$$

- (α угол зацепления, $\alpha = 20^{\circ}$);
- в) осевое усилие

$$F_a = F \cdot tg\beta \ = 3704 \cdot 0,21 = 778 \ H.$$

5. ПРИМЕР РАСЧЕТА КОНИЧЕСКОЙ ЗУБЧАТОЙ ПЕРЕДАЧИ

Рассчитать прямозубую коническую передачу (редуктор). Передаваемая мощность N=8 кВт при частоте вращения ведущего вала $n_1=750$ об/мин, ведомого $n_2=320$ об/мин.

1. Определяется передаточное отношение

$$u = \omega_1 / \omega_2 = n_1 / n_2 = 750 / 320 = 2,3$$
.

2. Определяются углы конуса шестерни δ_1 и колеса δ_2

$$tg\delta_2 = u = 2.3$$
; $\delta_2 = 66^{\circ}30'$; $\delta_1 = 90^{\circ} - \delta_2 = 90^{\circ} - 66^{\circ}30' = 23^{\circ}30'$.

3. Определяется крутящий момент на колесе

$$T_2 = 10^6 \frac{N}{\omega_2} = 9,55 \cdot 10^6 \frac{N}{n_2} = 9,55 \cdot 10^6 \frac{8}{320} = 2,4 \cdot 10 \text{ H*MM}$$

4. Выбираются материалы для изготовления зубчатых колес (см. пункт 2 примера расчета цилиндрических зубчатых колес и табл. 13).

Принимаем для шестерни сталь 45, для колеса сталь 40 с нормализацией.

5. Выбирается число зубьев шестерни

$$z_1 = 18...30$$
; $z_1 = 18$ 3y6.

6. Определяется число зубьев колеса

$$z_2 = z_1 \cdot u = 18 \times 2,3 \approx 41$$
 зуб.

7. Принимается коэффициент ширины зубчатых колес

$$\psi_{\hat{a}} = e / R_{e} = 0.3$$

где e - ширина зубчатых колес,

R_e - максимальное конусное расстояние.

8. Определяется допускаемое контактное напряжение для более слабого материала

 $\sigma_{\rm H}$ - предел контактной выносливости (табл.13);

 $[n]_{H}$ - запас прочности

Для стали 40 с нормализацией $[n]_{\rm H} = 1,2$

$$\sigma_{\rm H} = 2 HB + 70 = 2 \cdot 180 + 70 = 430 \text{ M}\Pi a$$

К_н - коэффициент режима работы

$$K_{\cdot} = \sqrt[7]{\frac{10^7}{N_p}}$$

где N_p - рабочее число циклов, $N_p = 60 \ n_1 T \ (T$ - заданный срок эксплуатации).

Если срок эксплуатации не задан $K_{\rm H} = 1$

$$[\sigma]_{\scriptscriptstyle H} = \frac{\sigma_{\scriptscriptstyle H}}{[n]_{\scriptscriptstyle H}} \cdot \kappa_{\scriptscriptstyle H} ,$$

$$[\sigma]_{\scriptscriptstyle H} = \frac{\sigma_{\scriptscriptstyle H}}{[n]_{\scriptscriptstyle H}} \cdot \kappa_{\scriptscriptstyle H} = \frac{430}{1,2} \cdot 1 = 358 \text{ M}\Pi \text{a}$$

9. Определяется делительный диаметр колеса из условия прочности по контактным напряжениям

$$d_{2} = 2 \cdot \sqrt[3]{\left(\frac{335}{[\sigma]_{H}}\right)^{2} \frac{\kappa \cdot T_{2} \cdot u}{\left(1 - 0.5\psi_{g}\right)^{2} \psi_{g}}}, \quad MM$$

где K - коэффициент дополнительных нагрузок, K=1,2, если твердость материала HB < 350, а если HB > 350, то K=1,4.

$$d_2 = 2 \cdot \sqrt[3]{\left(\frac{335}{358}\right)^2 \frac{1,2 \cdot 2,4 \cdot 10^5 \cdot 2,3}{\left(1 - 0,5 \cdot 0,3\right)^2 \cdot 0,3}} = 278 \text{ MM}$$

10. Определяется допускаемое напряжение на изгиб для материала шестерни

$$[\sigma]_F = \sigma_F / [n]_F$$

где σ_F и $[n]_F$ - см. табл. 13.

$$\sigma_F = 1.8 \text{ HB} = 1.8 \times 190 = 342 \text{ M}\Pi a, \quad [n]_F = 2,$$

$$[\sigma]_F = 342 / 2 = 171$$
 M Π a.

11. Определяется максимальный окружной модуль:

$$m = d_2 / z_2$$
, mm
 $m = 278 / 41 = 6.78$ mm.

Полученное значение $\,$ токругляется до ближайшего стандартного значения (стандартный ряд: 1; 1,25; 1,5; 1,75; 2; 2,25; 2,75; 3; 3,5; 4; 4,5; 5; 5,5; 6; 7; 8; 9; 10; 12; 14; 16).

$$m = 7$$
 MM.

- 12. Определяются основные размеры зубчатых колес:
- а) делительные диаметры

$$d_1 = m \cdot z_1 = 7 \times 18 = 126$$
 mm
 $d_2 = m \cdot z_2 = 7 \times 41 = 287$ mm

б) диаметры головок зубьев

$$d_{a1} = m (z_1 + 2\cos \delta_1) = 7(18 + 2 \times 0.92) \approx 139$$
 mm;

$$d_{a2} = m (z_2 + 2\cos \delta_2) = 7(41 + 2 \times 0.4) \approx 293$$
 mm;

в) диаметры ножек зубьев

$$d_{f1} = m (z_1 - 2,4\cos \delta_1) = 7(18 - 2,4 \times 0,92) \approx 110$$
 mm;

$$d_{f2} = m (z_2 - 2,4\cos \delta_2) = 7(41 - 2,4 \times 0,4) \approx 280$$
 mm;

г) максимальное конусное расстояние

$$R_e = \frac{m \cdot z_1}{2} \sqrt{1 + u^2} = \frac{7 \cdot 18}{2} \sqrt{1 + 2 \cdot 3^2} = 158 \text{ MM}$$

д) среднее конусное расстояние

$$R = R_e - B / 2 = 158 - 48/2 = 134 \text{ mm}$$

 $\varepsilon = \psi_e \cdot R_e = 0.3 \cdot 158 = 48 \text{ mm}$

13. Определяется средний модуль и средние делительные диаметры шестерни и колеса

$$m_c = \frac{m \cdot R}{R_e} = \frac{7 \cdot 134}{158} = 5.9 \text{ MM}$$

$$d_{c1} = m_c \cdot z_1 = 5.9 \times 18 \approx 106$$
 mm
 $d_{c2} = m_c \cdot z_2 = 5.9 \times 41 \approx 242$ mm

- 14. Определяются усилия в зацеплении:
- а) окружное усилие

$$F = 2T_2 / d_{2c} = 2 \cdot 2,4 \cdot 10^5 / 242 = 1983$$
 H

б) радиальное усилие на шестерне, равное осевому усилию на колесе

$$F_{r1}=F_{a2}=F~tg\alpha~cos\delta_1=1983\times0,36\times0,92=660~~H$$
 (α - угол зацепления, $\alpha=20^\circ$).

в) осевое усилие на шестерне, равное радиальному усилию на колесе

$$F_{a1} = F_{r2} = F tg\alpha \cos \delta_2 = 1983 \times 0.36 \times 0.4 = 285$$
 H.

15. Проверка зубьев по контактному напряжению

$$\sigma_{H} = \frac{335}{R_{e} - 0.5b} \sqrt{\frac{T_{2} * K_{H} \cdot \sqrt{(U^{2} + 1)^{3}}}{e^{*}U^{2}}} \prec [\sigma]_{H}$$

$$\sigma_{H} = \frac{335}{158 - 0.5 \cdot 48} \sqrt{\frac{2.4 \cdot 10^{5} \cdot 1 \cdot \sqrt{(2.3^{2} + 1)^{3}}}{48 \cdot 2.3^{2}}} = 305M\Pi a$$

$$\sigma_{H} = 305M\Pi a < [\sigma]_{H} = 358M\Pi a$$

16. Проверка зубьев на выносливость по напряжениям изгиба

$$\sigma_F = \frac{F \cdot k_F \cdot Y_F}{e \cdot m} = \frac{1983 \cdot 1.4 \cdot 4.3}{48 \cdot 7} = 35M\Pi a < [\sigma]_F = 171M\Pi a$$

 K_F - учитывает дополнительные нагрузки, $K_F = 1,3...1,5$ (при симметричном относительно опор расположении зубчатых колес); Y_F - см табл.15.

Таблица 15 - Значения У г

\mathbf{z}_1	18	20	25	30	40	50	60	80	100
Y_{F}	4,3	4,1	3,9	3,8	3,7	3,65	3,6	3,6	3,6

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Андреев, В.И. Детали машин и основы конструирования. Курсовое проектирование: учебное пособие / В.И. Андреев, И.В. Павлова. – Санкт-Петербург: Лань, 2013. – 352 с.
- 2. Курмаз Л.В. Конструирование узлов и деталей машин: Справочное-учебно-методическое пособие / Л.В. Курмаз, О.Л.Курмаз. М.: Высш. шк., 2007. 455 с.
- 3. Гулиа Н.В., Клоков В.Г., Юрков С.А. Детали машин: Учебник \setminus Под общ. ред. д. т. н., проф. Н.В. Гулиа. 2-е изд., испр. СПб.: Издательство «Лань», 2010. 416 с.: ил. (Учебник для вузов. Специальная литература).
- 4. Шейнблит А. Е. Курсовое проектирование деталей машин: Учеб. пособие. Изд-е 2-е, перераб. и дополн. Калининград: Янтар. сказ. 2002. 454 с

Составитель: Ишутина Лилия Николаевна

ДЕТАЛИ МАШИН, ОСНОВЫ КОНСТРУИРОВАНИЯ И ПОДЪЁМНО-ТРАНСПОРТНЫЕ МАШИНЫ

Ч.1. ДЕТАЛИ МАШИН И ОСНОВЫ КОНСТРУИРОВАНИЯ Примеры расчёта механических передач

Методические рекомендации к самостоятельной работе

Компьютерная вёрстка Л.Н. Ишутина
